

Mini-Circuits 13 Neptune Avenue Brooklyn, NY 11235, USA

Email: testsolutions@minicircuits.com Web: minicircuits.com Phone: +1-718-934-4500

MORE SOLUTIONS FOR TEST & MEASUREMENT!

evna user guide

Important Notice

This guide is owned by Mini-Circuits and is protected by copyright, trademark and other intellectual property laws.

The information in this guide is provided by Mini-Circuits as an accommodation to our customers and may be used only to promote and accompany the purchase of Mini-Circuits' Parts. This guide may not be reproduced, modified, distributed, published, stored in an electronic database, or transmitted and the information contained herein may not be exploited in any form or by any means, electronic, mechanical recording or otherwise, without prior written permission from Mini-Circuits.

This guide is subject to change, qualifications, variations, adjustments or modifications without notice and may contain errors, omissions, inaccuracies, mistakes or deficiencies. Mini-Circuits assumes no responsibility for, and will have no liability on account of, any of the foregoing. Accordingly, this guide should be used as a guideline only.

Trademarks

Microsoft, Windows, Visual Basic, Visual C# and Visual C++ are registered trademarks of Microsoft Corporation. LabVIEW and CVI are registered trademarks of National Instruments Corporation. Delphi is a registered trademark of Delphi Technologies, Inc. MATLAB is a registered trademark of The MathWorks, Inc. Agilent VEE is a registered trademark of Agilent Technologies, Inc. Linux is a registered trademark of Linus Torvalds. Mac is a registered trademark of Apple Inc. Python is a registered trademark of Python Software Foundation Corporation.

All other trademarks cited within this guide are the property of their respective owners. Neither Mini-Circuits nor the Mini-Circuits PTE (portable test equipment) series are affiliated with or endorsed or sponsored by the owners of the above referenced trademarks. Mini-Circuits and the Mini-Circuits logo are registered trademarks of Scientific Components Corporation.

Mini-Circuits

13 Neptune Avenue Brooklyn, NY 11235, USA Phone: +1-718-934-4500 Email: testsolutions@minicircuits.com Web: minicircuits.com

A-INTRODUCTION	09-13
1. About the eVNA-63+	
1.1. Key Features	
1.2. Concept & Control Options	10
2. About this Guide – Prepare, Practice, Calibrate & Measure	11-12
2.1. Measurement Automation / Programming with SCPI	
2.2. Terminology	
2.3. Languages	12
3. Support Contacts	13
4. Warranty & RMA Returns	13
5. End of Life	13
B-PREPARE	14-30
1. Safety & Cautions	14-15
1.1. Maximum Input Levels	
1.2. Bias Tee Output Levels	
1.3. Operating Environment	
1.4. User Service / Cleaning	
2. Factory Calibration	
2.1. Standard Factory Cal - Lowest-cost	
2.2. Premium Factory Cal - Zero Down-time	
3. Software Setup	
3.1. Software Downloads & Resources	
3.2. System Requirements	
3.3. eVNA Studio Software Installation	
4. Graphical User Interface (GUI) Overview	
4.1. Main Menu / Control Panel Groups	
4.2. Settings Bar & Status Bar	
4.3. Instrument Status Icons	
4.4. Graph Status Notifications	
5. Hardware Setup	
5.1. Front Panel Layout	
5.2. Rear Panel Layout	
5.3. Initial Connection & Power-On	
5.4. Test Port Connections	
5.5. Bias-Tee Connections	
5.6. Reference Connections	
5.7. Trigger In Connection	
5.8. Functional Block Diagram	27
6. Measurement Essentials	
6.1. Basic VNA Operation	
6.2. Transmission & Reflection Measurements	
6.3. S-Parameters	
C-PRACTICE	31-81
1. Assessments	of of
1. Accessories	
1.1. Connectors, Connector Savers & Connector Care	31-32

1.2. Test Cables
2.1. System Reset
3. Channels & Traces
3.1. Channels
3.1.1. Channel Setup
3.1.2. Active Channel
3.1.3. Channel Display
3.2. Traces
3.2.1. Trace Setup
3.2.2. Active Trace
3.2.3. Trace Display
4. Frequency & Power Stimulus Settings
4.1. Frequency Sweeps
4.1.1. Sweep Power Level
4.1.2. Sweep Power Slope
4.2. Power Sweeps
4.3. Segmented Frequency Sweep
4.3.1. Linear & Order-Based Trace Display
4.4. Advanced Sweep Settings
4.4.1. Fast Sweep Mode
4.4.2. Sweep Time Period
4.4.3. Sweep Delay
4.4.4. Spur Suppression
4.5. Sweep Triggers
4.5.1. Trigger Source
4.5.2. Trigger Mode
5. Measurement & Data Formatting
5.1. Measurement Types
5.2. Graph Types
5.2.1. X-Y Plots
5.2.2. Polar Plots
5.2.3. Smith Charts
5.3. Electrical Delay
5.4. Scaling
5.5. Averaging
5.5.1. Sweep Averaging
5.5.2. Trace Smoothing
5.5.3. IF Bandwidth
6. Markers
6.1. Marker Setup
6.2. Moving Markers
6.3. Clear Markers
6.4. Marker Coupling
6.5. Reference Marker & Delta Mode
6.6. Scale Axis from Marker Position
6.7. Marker Searches
6.7.1. Marker Tracking
· · · J

32-34
36
37-40
37
39
39
39
40-49
41
41-42
42
43
44-45
45
45
.46
46-47
47
47-48
48-49
49-56
49
50
50
51
52-53
53-54
54
55
55
55-56
56
57-66
57-58
58
59
59-60
60
61
61
61

6.7.2. Search Range	62
6.7.3. Search Coupling	62
6.7.4. Max / Min Search	62
6.7.5. Peak Search	62-63
6.7.6. Target Search	63-64
6.7.7. Bandwidth Search	64-65
6.7.8. Notch Search	65-66
7. Memory Calculations (Memory Math)	66-67
8. Measurement Pass / Fail Tests	67-71
8.1. Specification Limit Test	67-68
8.2. Ripple Test	68-70
8.3. Bandwidth Test	70-71
9. Window / Display Configuration	
9.1. Display Update	71-72
9.2. Main Menu Bar	
9.3. Channel Labels	72-73
9.4. Axis Labels	
9.5. Invert Colors	73-74
10. Save & Recall Data	
10.1. Instrument Settings, Calibration State & Measurement Data	
10.1.1. Saving State Data	
10.1.2. Recalling State Data	
10.2. S-Parameter Data	
10.3. Trace Screenshot	
10.4. Trace CSV Data	
11. Simulation Mode	77-81
11.1. Starting Simulation Mode	
11.2. Simulation of S-Parameter s2p Files	79-81
D-CALIBRATE	82-112
1. VNA Error Sources	82-84
1.1. Types of Error	
1.1.1. Random Errors	
1.1.2. Drift Errors	
1.1.3. Systematic Errors	
1.2. Correcting for VNA Error Sources	
1.3. Isolation Considerations	83-84
2. Calibration Theory	84-85

	3.5. Adding / Modifying Cal Kits
	3.5.1. Select and Name a Cal Kit
	3.5.2. Define Cal Kit Standards
	3.5.3. Define Subclasses
	3.5.4. Export / Import of XTML Cal Kit Definitions
	3.6. Enabling Error Correction
	3.7. Clearing Calibration Data
4	. Calibration Methods
	4.1. Response Calibration
	4.1.1. Thru Response (Transmission Tracking)
	4.1.2. Open / Short Response (Reflection Tracking)
	4.2. Enhanced Response Calibration
	4.3. One Port Calibration
	4.4. Two Port Calibration
5	. Optimizing Calibration Conditions
6	. Calibration Verification
	6.1. Smith Chart Analysis
	6.2. Golden DUT
7.	Additional Calibration Options
	7.1. Power Calibration
	7.2. Receiver Calibration
	7.3. Cal Trig Source
E	-MEASURE
1	Measurement Process Flow
2	. Measurement Examples
	2.1. One Port Device Measurement (Antenna Example)
	2.2. Pair of One Port Device Measurements (Dual Antenna Exam
	2.3. Two Port Passive Device Measurement (Bad Pass Filter Exam
3	. De-Embedding Measurement Data
	3.1. Port Extension
	3.2. Time Domain Gating
	3.3. Modify the Cal Kit
4	. Optimizing Measurement Speed vs Measurement Performance
	4.1. Number of Sweep Points
	4.2. Turn off Display Update
	4.3. Use a Single Source

4.4. IF Bandwidth

84

85

85

86

86-95

87-88

88-89 89

89-90

90-91

3.4.2. Ideal Cal Kit

- 4.5. Data Averaging
- 4.6. Sweep Power Level

2.1. Calibration Process Flow

2.2. How Often to Calibrate

3. eVNA Calibration Standards

3.2.1. 12-Term Error Model

3.4. Selecting a Cal Kit

3.2. Insertable & Non-Insertable

3.3. Automatic / Electronic Calibration (eMCal)

3.4.1. Mini-Circuits' KSOLT-63-x Cal Kits

2.3. Reference Plane

3.1. SOLT Calibration

	92
	92-93
	93-94
	95
	95
	96-110
	97-99
	99-102
	102-105
	105-107
	107-110
	110-111
	111-112
	111
	112
	112
	112
	112
	112
	113-123
	114-118
	114-115
ple)	116
nple)	117-118
	119-122
	119-121
ce	
	122
	123 123
	123 123

A - Introduction

1. About the eVNA-63+

Mini-Circuits' eVNA-63+ is a high performance, software-controlled vector network analyzer (VNA). By moving the complex data processing and calculation required of vector network measurements out of the instrument and into an advanced software package, Mini-Circuits is able to offer a fully-featured but cost effective VNA for every test bench.

The product ships with Mini-Circuits' eVNA Studio software package, providing a powerful GUI which will feel familiar to any engineer with experience of VNA measurements.

1.1. Key Features

- Time domain analysis & gating
- Full 2-port, 2-path s-parameter measurement (S11, S21, S12, S22) in a variety of formats
- Complete vector network analysis capability
- Application programming interface (API) for measurement automation
- Robust SCPI command interface (compatible with legacy VNA models)
- Touchstone file support (import & export) for use with Electronic Design Automation (EDA) simulation tools
- Offline simulation mode for measurement preparation, training and analysis of s-parameter data with no hardware present
- Port extension / de-embedding
- Internal bias-tees for powering of active DUT (devices under test)

1.2. Concept & Control Options

for VNA functionality:

- 1. Host PC with Microsoft Windows
- 2. eVNA-63+ hardware connected by USB to the host PC
- 3. eVNA Studio software package running on the host PC

Mini-Circuits' eVNA concept is a system formed from 3 elements, all of which are required

Meets the requirements of the following applicable European directives and carries the CE marking accordingly:

Restriction of the Use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS)

Meets the requirements of the following applicable UK directives and carries the UKCA marking accordingly: The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

2. About this Guide - Prepare, Practice, Calibrate & Measure

VNAs are precision test instruments, based on relative measurements made between the internal source and receivers. To achieve the specified accuracy, careful thought must be given to the complete measurement process, from understanding the features / limitations of the instrument, to the hardware connections, to calibration and instrument settings, to data interpretation.

This user guide is intended for test engineers of any level of experience who intend to perform RF measurements on 1 or 2 port devices with Mini-Circuits' eVNA-63+. It outlines the specific instructions for software installation, hardware setup, VNA calibration and error correction, and provides recommendations on best practice for RF measurements. It is recommended that the user familiarize themselves with all aspects of this guide before starting measurements.

The core sections of this guide are structured into Mini-Circuits' measurement philosophy, as defined below:

1. Prepare

- Familiarize yourself with RF and measurement basics and best practices
- Setup and understand the eVNA Studio software
- Review any applicable reference material to support the measurement

2. Practice

- Use appropriate, high quality and well-maintained accessories
- Define the measurement goals and requirements
- Trial connections and instrument settings to ensure all needed components and accessories are readily available

3. Calibrate

- Inspect the test environment and take steps to minimize sources of random error
- Select and examine calibration standards, ensuring they are clean, high guality and free of damage
- Consider systematic measurement error sources and perform a careful calibration

4. Measure

- Configure the eVNA Studio software settings
- Perform the measurement
- Understand the results

2.1. Measurement Automation / Programming with SCPI

This guide focuses on VNA measurements using the Graphical User Interface (GUI) of the eVNA Studio software package. The software also includes an Application Programming Interface (API) which allows automation of all eVNA features from most common programming environments, including Python, LabVIEW, C# and many more. The process involves creating a raw socket connection, either within the host PC or from a remote PC across a TCP / IP network, and sending a series of standard SCPI commands for control of the eVNA.

Where possible, this guide also includes a summary of the SCPI sequence used to achieve the particular action being described in the GUI. SCPI sequences will be presented at the end of relevant section in the format below:

SCPI

SENSe:FREQuency:STARt 500000 SENSe:FREQuency:STOP 600000000 SENSe:SWEep:POINts 201

Full instructions for programming with the eVNA-63+, including how to implement the SCPI commands, are covered in the programming manual available from our website at: minicircuits.com

2.2. Terminology

For clarity, the following general terms are used throughout our documentation to refer to VNA concepts and the specifics of Mini-Circuits' eVNA implementation.

Term	Intended Meaning
VNA	A reference to Vector Network Analyzer test e
eVNA	Mini-Circuits' family of VNA products, includi
eVNA-63+	Mini-Circuits' eVNA-63+ model, operating ov
eVNA Studio	The advanced software package required for
Host PC	The local PC connected by USB to the eVNA-
Remote PC	A second PC, attached to the same network a

2.3. Languages

equipment in general, as available from a range of manufacturers.

ling hardware and software elements.

ver 300 kHz to 6 GHz.

r operation of Mini-Circuits' eVNA family, including a GUI & API.

-63+ hardware and running the eVNA Studio software.

as the host PC and capable of remotely operating the eVNA via the API.

Please contact testsolutions@minicircuits.com if instructions are required in other languages.

3. Support Contacts

We are here to support you every step of the way. For technical support and assistance, please contact us at the email address below or refer to our website for your local support:

> testsolutions@minicircuits.com minicircuits.com/contact/worldwide_tech_support.html

4. Warranty & RMA Returns

Mini-Circuits provides a 3-year warranty with all eVNA-63+ systems. Please contact your account manager or refer to our website for full details:

minicircuits.com/support/ordering.html

If you have any questions or concerns with your eVNA-63+, please contact us in the first instance through testsolutions@minicircuits.com. Our team will work with you promptly to understand and resolve any issues. As a software-controlled instrument, it is usually possible to resolve issues remotely without requiring the unit to be returned to the factory. In the event that a return to the factory is necessary, Mini-Circuits will provide an RMA number and full return instructions.

5. End of Life

Please contact testsolutions@minicircuits.com to review environmentally friendly end of life disposal options.

B - Prepare

1. Safety & Cautions

The eVNA-63+ instrument and external AC / DC power adapter module contain no user serviceable parts and should not be opened. Discontinue use and contact Mini-Circuits in the event of visible damage to any parts.

Caution:

- Only use the AC / DC power supply adapter supplied with the instrument.
- power from the equipment.

1.1. Maximum Input Levels

Adhere to the published maximum specifications on all ports as stated in the published datasheet.

Ports	Parameter	Specification Limit
Port 1 & 2	Input Power (below 10 MHz) Input Power (10 MHz to 6 GHz) DC Input Voltage	+15 dBm max per port +20 dBm max per port ±30 V max per port
Bias 1 & 2	DC Input Voltage DC Input Current	±30 V max per port 200 mA max per port
Trigger In	DC Input Voltage	5V Max
Ref In	Nominal Impedance	50Ω
DC Input	DC Supply Voltage to eVNA-63+ DC Supply Current to eVNA-63+	5.25 V max 3A max
AC Input	AC Input Voltage to AC / DC power adapter	100-240V

Caution:

Observe ESD precautions when handling and connecting the eVNA-63+ to avoid damage.

1.2. Bias Tee Output Levels

The internal bias-tees on Port 1 & 2 allow a DC bias to be passed to components within the test path as required. The DC voltage current / output is determined by the external source input connected at the Bias 1 & 2 ports. Be sure to check that the DC bias output is within the safe limits of any external devices connected within the RF signal path.

The AC plug acts as the mains disconnect for the equipment. The user should ensure the equipment is positioned so that the AC and DC plugs are not obstructed in the event the user needs to remove

Caution:

- It is recommended to disable the bias-tee outputs when not required in the test application in order to avoid inadvertent damage to external components in the RF signal path.
- The bias-tee outputs should be disabled during calibration.

1.3. Operating Environment

The eVNA-63+ is intended for testing of RF components in indoor laboratory or production test environments. Do not use in damp or excessively humid conditions, or in any other condition which exceeds the published environmental specifications.

Condition	Specification
Operating Temperature	+5 to +50°C
Storage Temperature	-35 to +75°C
Relative Humidity	5% to 85% (non-condensing)
Pollution Degree	1 - No pollution or only dry, non-conductive pollution
Altitude	2000 m

1.4. User Service / Cleaning

The only user-performed service possible for eVNA models is external cleaning of the case and connectors as needed. Do not use any detergents or spray cleaning solutions. The case can be cleaned with a soft, slightly dampened cloth and the connectors with an alcohol solution. Do not allow any liquid ingress into the case or connectors.

2. Factory Calibration

As a precision test instrument, regular factory calibration is necessary to ensure continued operation within the published specifications. The recommended calibration period is annually. Mini-Circuits offers 2 approaches to factory calibration, intended to provide a flexible choice based on your budget and test requirements:

2.1. Standard Factory Cal - Lowest-cost

Place your calibration order with any Mini-Circuits sales office, or authorized representative / distributor and ship the unit back to Mini-Circuits with the details provided. Mini-Circuits will calibrate and return the unit, accompanied by the calibration data and certificate.

2.2. Premium Factory Cal - Zero Down-time

After receiving your calibration order, Mini-Circuits will send a fully calibrated replacement unit to your door for use while your own unit is returned. Simply replace your own unit in the same packaging and ship back to Mini-Circuits. Mini-Circuits will calibrate and return your unit, accompanied by the calibration data and certificate. The loan unit can then be returned to Mini-Circuits, again using the same packaging.

3. Software Setup

3.1. Software Downloads & Resources

3.2. System Requirements

The minimum requirements for installation of the eVNA software package and API on the host PC are:

- Microsoft Windows 7 or 10 (64-bit)
- Intel i3 processor or equivalent
- 8 GB RAM
- USB 2.0 or later

3.3. eVNA Studio Software Installation

- 1. Download the eVNA Studio software package from:
- 2. Run the eVNA_x.x.x_Setup.exe installation program.
- 3. If Microsoft Defender SmartScreen provides a warning about an unrecognized app, select "More Info" and then "Run Anyway".
- 4. If prompted by Windows User Account Control, enter the username and password for an account with permission to install software on the PC.

The full eVNA Studio software package including GUI and API is available for download from: minicircuits.com/softwaredownload/evna.html

minicircuits.com/softwaredownload/evna.html

	×
Do you want to allow this app from an unknown publisher to make changes to your device?	
eVNA_3.0.0_Setup.exe	
Publisher: Unknown	
File origin: Hard drive on this computer	
Show more details	
To continue, enter an admin user name and password. User name	
User name	

5. The InstallShield Wizard will load, followed by a Windows Security prompt asking for permission to install the software.

- a. You may optionally select "Always trust software from Mini-Circuits" to avoid similar prompts for Mini-Circuits eVNA software in future.
- b. Click Install to proceed with the installation.
- 6. Click OK on the prompt confirming that "Microsoft Visual C++ 2015 Redistributable Package" will be installed.

7. Click Install to confirm the installation of "Microsoft Visual C++ 2015 Redistributable Package".

Package" installation has failed, this is likely due to a different version of the package already existing on the PC. It is recommended to proceed with the installation.

computer.	Click Install to	
all	Cancel	

8. A notification may appear to advise that the "Microsoft Visual C++ 2015 Redistributable

9. The InstallShield Wizard for the eVNA Studio software package will load, click Next to continue.

10. Accept the terms of the license agreement and click Next to continue.

11. Click Install to accept the default location (you may first click Browse to select an alternative installation folder if preferred).

12. The final screen will confirm installation of the software, click Finish to finalize.

In the event of any issues with installation, please refer to the Troubleshooting section of this manual, or contact testsolutions@minicircuits.com for support

4. Graphical User Interface (GUI) Overview

The GUI is laid out as shown in figure 1, with a structure that should be familiar to users of legacy VNA instruments. The control panel on the right-hand side provide access to the toplevel options with a dynamic sub-panel just to the left providing the next level options based on the user's input. The same set of options are also available from the main menu at the top of the screen, to provide an interface familiar to users of PC software. Table 1 summarizes each of the key elements of the GUI display highlighted in figure 1.

Figure 1: eVNA Studio GUI display

GUI Section	Description
Main Menu	Standard software menu bar with drill down options for all eVNA features.
Control Panel	Control panel with buttons for all top level and second level items accessible from the Main Menu. Provides the same functionality as the Main Menu in a format which should be more familiar to users of legacy VNAs.
Sub Panel	Dynamic panel of buttons which updates to show the relevant options based on the last selection f rom the Control Panel or Main Menu.
Status Bar	Read-out of the current settings for the last Control Panel / Main Menu selection
Settings Bar	Additional buttons or input fields to specify any parameters required by the Control Panel / Main Menu selection.
Instrument Status	Series of icons indicating the general configuration / status of the eVNA.
Port Status	Icons indicating which of the 2 ports is currently active as the stimulus signal.
Graph Display	Central graphical display showing the measured data and graphs.
Graph Status	Channel and trace parameters for the graph display.

Table 1: Summary of each main section on the eVNA Studio GUI display

4.1. Main Menu / Control Panel Groups

The main menu and control panel provide two different interfaces to the same set of features. Navigation through the 2 interface types should feel familiar to uses of Windows software and legacy VNA instruments respectively. The top-level groupings are:

- **1**. Stimulus: Define frequency range or time span, power, sweep and trigger parameters.
- 2. Channel / Trace: Defines the number and arrangement of channels / traces on the data panel
- and the set-up of the graphical display of measurement results.
- 4. Markers / Analysis: Defines the markers to be used in the graphic display. Markers can be used for peak statistical analysis of the waveform or to mark discrete time / frequency / data points.
- 5. System: Defines the hardware capabilities of the eVNA system, with options to save and recall different data sets.

4.2. Settings Bar & Status Bar

The Settings Bar updates dynamically to provide additional input options where required, for the last selection made through the Main Menu or Control Panel / Sub Panel.

The menu sequence below for example, displays an input box for "Num Traces" to allow the user to enter the number of active traces. The cross icon is used to cancel the input and the tick icon (when shown) or enter key to set the parameter. Channel / Trace \rightarrow Trace \rightarrow Num Traces

Num Traces	dB	\checkmark	×	(

The four buttons on the right-hand edge are always shown, from left to right they are:

 \sim \neg

- 1. Undo Undo the last settings change
- 2. Redo Re-apply any change in settings following an "Undo"
- 3. Toggle Panels Toggle the GUI between showing:
- a. Trace + Control Panel + Sub Panel
- b. Trace + Sub Panel

The start and stop frequency, center frequency, or frequency span can be specified.

3. Response: Defines the calibration of the DUT, the measurement of the DUT to the stimulus,

\rightarrow \square

- c. Trace only
- 4. Back Go back to previous level on the sub panel (where it has previously been drilled down through selections made in the Control Panel or Top Menu)

The status bar is a static read-out of the current settings relevant to the latest menu section.

4.3. Instrument Status Icons

The instrument status bar at the bottom of the GUI, beneath the graphical display, contains a series of icons which are either "illuminated" or inactive to indicate the current status of the eVNA instrument. Table 2 summarizes the function of each GUI icon.

lcon	Function	Description
- The second	Bias-tee	Internal bias-tee is enabled System \rightarrow More \rightarrow Bias Tee
† ↓	Display Updates	Updates to the graph display are enabled Response \rightarrow Display \rightarrow Update
((<u>•</u>))	RF Output	RF output is enabled Stimulus \rightarrow Sweep Setup \rightarrow Power Menu \rightarrow RF Out
	Measurement Status	Measurement is initializing or in progress
TC	Trigger Source	Trigger source selection (internal, external, manual or SCPI): Stimulus \rightarrow Trigger \rightarrow More \rightarrow Trigger Source
₀i	Reference Source	Reference source selection (internal or external) System \rightarrow More \rightarrow Reference Clock Source
	Temperature Status	Green (device up to temperature), yellow (device is warming up), or red (over temperature, device will shut down)
	Connection Status	eVNA-63+ instrument hardware or simulator mode is connected System \rightarrow More \rightarrow Connections

Table 2: Explanation of each instrument status icon

4.4. Graph Status Notifications

The graph status bar shows indicates some key parameters / settings for the active channel:

- Active channel number
- Start / Stop / Center / Span frequency
- IFBW IF bandwidth of the sweep

5. Hardware Setup

5.1. Front Panel Layout

Item Name	Туре	Description
Power Indicator	LED	Indicates power and software co • Red = Power on but the instrum PC • Green = Power on and the instru (ready to measure)
Port 1	N-type female	RF source / receiver test port 1
Port 1	N-type female	RF source / receiver test port 2

5.2. Rear Panel Layout

Item Name	Туре	Description
Bias 1	BNC female	DC voltage input port for bias-tee 1
Bias 2	BNC female	DC voltage input port for bias-tee 2
Aux Sync	BNC female	Auxiliary input (not currently in use)
Trigger In	BNC female	External trigger input
Ref In	BNC female	10 MHz reference input
Ref Out	BNC female	10 MHz reference output
USB 2.0	USB type B	USB control port
DC Input	2.5 mm DC socket	5V DC supply input

onnection status: ment has not been claimed by the eVNA Studio software on the host

trument is assigned to the eVNA Studio software on the host PC

5.3. Initial Connection & Power-On

Note:

• Ensure the eVNA Studio software package is installed on the host PC before proceeding.

- 1. Connect the USB cable between the eVNA-63+ instrument and the host PC
- 2. Connect the supplied AC / DC power adapter between the eVNA-63+ and a suitable AC mains power source
- 3. The eVNA-63+ will power on as soon as the AC supply is turned on, RF measurement functions can then be enabled through the software
- 4. It is strongly recommended to allow the unit to warm up before calibration or test measurements are carried out. This takes approximately 15 minutes and the temperature indicator in the eVNA Studio GUI will appear green once the instrument has reached a stable temperature.

5.4. Test Port Connections

Ports 1 and 2 are the RF test ports, both with the option to be configured as either source or receiver. It is important to use good quality accessories and cables, properly connected and torqued with a suitable torque wrench. Mini-Circuits supplies a full suite of test and calibration accessories.

Accessory connectors should be inspected regularly for damage and discarded at the first sign of wear and tear. N-type connector savers are recommended in environments where frequent or high numbers of connections are required on ports 1 and 2. These can then be discarded and replaced in the event of damage, rather than requiring repair to the eVNA-63+ instrument.

5.5. Bias-Tee Connections

The bias 1 and bias 2 ports accept a DC voltage from a suitable source (up to 24V, 200 mA on each port). The DC bias can be fed to the measurement ports, Port 1 and Port 2 to support testing of amplifiers and other components which draw the DC supply from the RF path. The DC bias output on ports 1 and 2 can be disabled or enabled together using the software:

1. Select the bias-tee feature: System \rightarrow More \rightarrow Bias-Tee

🕶 Bias Tee			\rightarrow
Note:			
disconnected internally. Do not power the bias te • Calibrate the VNA. • Measure devices that	e connectors whe		
Use bias tee function	1?		
	ок	Cancel	

- 3. Repeat and uncheck the option to disable the DC voltage outputs

Caution:

- It is important to disable the DC bias during calibration.
- Both bias-tees are enabled or disabled simultaneously, ensure that all devices connected on both RF ports will tolerate the DC voltages / currents supplied at the respective bias-tee input ports.

SCPI

SYSTem:BIAStee [0|1]

2. Check the "User bias tee function?" option and click OK to enable the DC voltage outputs

5.6. Reference Connections

The Ref In & Ref Out ports allow synchronization of measurements with external test instruments. The reference source can be switched between the internal and external (when connected) sources.

1. Open the reference clock source settings bar

System \rightarrow More \rightarrow Reference Clock Source \rightarrow Internal | External

2. Select from the Internal or External option

SCPI

SENSe:ROSCillator:SOURce [INTernal]EXTernal]

5.7. Trigger In Connection

The Trigger In port allows eVNA measurements to be synchronized with external equipment. Stimulus \rightarrow Trigger \rightarrow ...

SCPI TRIGger:..

5.8. Functional Block Diagram

Figure 2 is a functional representation of the eVNA-63+ design, including the source, receiver, coupler and bias-tee routing.

Figure 2: Functional block diagram of the key eVNA sections

6. Measurement Essentials

6.1. Basic VNA Operation

Figure 3 summarizes the basic elements and signal flows of a generic VNA. Unlike a legacy VNA, the eVNA moves the display and the majority of the processing out of the instrument and on to an external host PC, with the eVNA Studio software package. This simplifies and reduces the cost of the VNA instrument and reduces the risk of obsolescence from an integrated PC within a legacy VNA.

The basic components are:

Source

Signal generator capable of swept or stepped frequency

• Test Set / Signal Separation

Separates incident and reflected waves Measures incident signal to use as the reference

Receivers

Measure real / imaginary data pairs for each measurement Can be thought of as small VSA (vector signal analyzers) sharing a common LO (local oscillator)

Processor

Performs the required number crunching Can be an internal processor or external PC

Display

Screen and user interface

Figure 3: Basic elements of a VNA

6.2. Transmission & Reflection Measurements

Vector network analysis measurement are based on ratios of transmitted and reflected signals, as described in figure 4.

\mathcal{M} \sim Incident (R) • Transmitted (B) **RF DUT** ~~~~~ Reflected (A) <

Incident (R)=Reflected (A)+Transmitted(B) Transmission Coefficient=T=B/R Reflection Coefficient= Γ =A/R

Figure 4: Transmitted & reflected signal paths in VNA measurements

These ratio measurements can be analyzed and presented as a number of metrics:

Reflections = $\frac{A}{R} = \frac{Reflected}{R}$	Transmissions = $\frac{B}{R}$ = $\frac{Transmitted}{R}$
Reflection Coefficient (Г)	Transmission Coefficient (Γ)
S-parameters (S ₁₁ , S ₂₂)	S-parameters (S ₁₂ , S ₂₁)
Standing Wave Ratio (SWR)	Gain, Loss
Gain, Loss	Insertion Phase
Impedance, Admittance	Group Delay

6.3. S-Parameters

Reverse Direction

S-parameters (scattering parameters) describe the reflections and transmissions within a network as complex ratios. They are one of the more widely used set of measurement parameters for characterization of RF & microwave devices for linear / steady-state operation. The signal flows for s-parameter measurement of a 2-port device with a 2-port VNA are summarized in figure 5.

S12 = B Forward insertion loss / gain S21 = <u>B</u> S22 = <u>A</u> Output return loss

Input return loss Reverse insertion loss / gain

C - Practice

Accurate and reliable VNA measurements are reliant on a well-designed test setup. For any measurement, a VNA needs to be properly calibrated, with careful consideration given to the external accessories and connectors used, including:

- High quality RF cables from ports 1 and 2
- High quality connector adapters if required for connection to the DUT
- Torque wrench to achieve proper mating on all VNA, cable, adapter and DUT connections

Note:

• To ensure reliable measurements, cables and connector adapters should be regularly inspected for damage and discarded in the event of any deficiency.

1. Accessories

Mini-Circuits provides a complete set of components, accessories, and tools to support any RF and microwave test application. Our full range of catalog components is available from our website but a list of carefully selected accessories is summarized below, recommended for use with the eVNA.

Figure 6: 2-port DUT connected with 1 cable - Ensure a connector saver is used on port 2

1.1. Connectors, Connector Savers & Connector Care

It is important to select accessories and cables to match the connector types and genders of the DUT. This may require opposite connector types being presented from the port 1 and port 2 test cables where the DUT has "in-line" connectors (for example male input and female output, or vice versa). All accessories required to connect the DUT must be used during the calibration steps, with the swapping of DUT and calibration standards being the only changes in the setup.

To avoid wear out or damage to the precision RF connectors on the eVNA front panel, it is recommended to use "connector savers" where a device that needs frequent connections / disconnections would otherwise be connected directly to the eVNA. A connector saver for the eVNA is just an adapter with N-type male input and a convenient output connector type for the measurement. This can be left attached to the eVNA and should be discarded in the event of any damage. An example use for the connector saver would be between port 2 and the DUT in figure 6.

For more information, see the application note at: https://blog.minicircuits.com/a-simple-trick-to-protect-your-high-frequency-vna-and-save-onlab-expenses/

It is important to regularly inspect all connectors used in VNA measurements and discard any worn cables or adapters at the first sign of damage. Torque wrenches should always be used to ensure a good mate between any accessories and the eVNA. If the connection is too loose then measurement instabilities / inaccuracies may be introduced. Over-tightened connections on the other hand risk damage to the eVNA instrument.

1.2. Test Cables

An important factor in ensuring accurate, repeatable measurements in RF test applications is the stability of performance of the test cable used. In most test environments, cables undergo frequent bending during normal use, which can result in changes in phase and other performance parameters. Depending on the cable, these changes can be significant enough to degrade the accuracy and precision of your measurements. Therefore, it is important to consider how bending affects cable phase performance and how a cable is gualified for stability of phase versus flexure.

Phase stability is desirable in test cables because it: Ensures tight phase tracking with changing temperature, lowering residual errors

- and uncertainties
- Extends the length of time between calibrations by minimizing drift

In general, phase is affected by the physical length of the cable assembly, the cable bend radius, and the cable assembly technique. Cables are typically designed to operate over a wide frequency range and minimize attenuation (insertion loss).

The longer the electrical length, the greater the loss. Since electrical length (and loss) is directly proportional to the square root of εr , the dielectric of the cable material, most RF cables are manufactured from materials with a low dielectric constant, usually PTFE (Teflon) and in some cases SiO₂. PTFE is more common because it's easy to bend without damaging, while SiO₂ is brittle and only suitable for semi-rigid cable assemblies.

All Mini-Circuits' cables use PTFE, as a good degree of flexibility is needed in most test applications. One drawback of the flexible PTFE construction is, of course, the potential for phase changes (and other performance changes) due to bending. Bending the cable changes the physical length at the point of bend. It may also constrict and loosen the dielectric, shielding, and braiding around the center conductor, which can also affect the electrical length and result in phase changes.

Consequently, it is important to observe measurement best practice to minimize these effects on VNA measurements:

- **1**. Select only high quality, stable RF test cables, such as Mini-Circuits CBL series
- 2. Discard cables at the first sign of damage (check the cable, connectors, and the joins between cable and connectors)
- 3. Use the shortest cable runs possible, but not so short that it impedes the following notes
- 4. Avoid tight bend radii in the cable arrangements (a longer cable with gentle 270° loop is preferable to a very short, sharp cable bend)
- 5. Arrange the cables in such a way that the DUT and calibration standards can be swapped in and out without significantly altering the cable arrangements

Figures 7 and 8 present typical applications of these notes.

Figure 7: 2-port DUT connected with 2 sharply bent cables

Figure 8: 2-port DUT connected with 2 longer cables to allow gentle bend

1.3. Recommended Accessories

These selected Mini-Circuits accessories are recommended for best performance with the eVNA. A range of connector types are listed to cover any requirements with SMA or N-type DUT.

Cables: minicircuits.com/WebStore/Cables.html

Model Name	Description
CBL-2FT-NMNM+	N Male to N Male, Precision Test
CBL-2FT-SMNM+	N Male to SMA Male, Precision Test
CBL-2FT-SFNM+	N Male to SMA Female, Precision Test

Adapters: minicircuits.com/WebStore/adapters.html

Model Name	Description
SF-SM50+	Adapter SMA-M to SMA-F
SM-SM50+	Adapter SMA-M to SMA-M
SF-SF50+	Adapter SMA-F to SMA-F
NF-NM50+	Adapter N-M to N-F
NM-NM50+	Adapter N-M to N-M
NF-NF50+	Adapter N-F to N-F
NF-SF50+	Adapter N-F to SMA-F
NF-SM50+	Adapter N-F to SMA-M
NM-SF50+	Adapter N-M to SMA-F
NM-SM50+	Adapter N-M to SMA-M

Terminations: minicircuits.com/WebStore/terminations.html

Model Name	Description
ANNE-50+	Termination SMA Male
ANNEF-50+	Termination SMA Female
KARN-50+	Termination N Male

Torque Wrenches: minicircuits.com/WebStore/PortableTestAccessories.html

Model Name	Description
TRQ-516-08	SMA Torque Wrench
TRQ-N34-8	N-Type Torque Wrench 3/4" 8 lb-in
TRQ-N20-8	N-Type Torque Wrench 20mm 8 lb-in

2. Hardware Connection

After connecting and powering on the eVNA-63+ instrument hardware it needs to be connected to the eVNA Studio GUI on the host PC.

- 1. Launch the eVNA Studio GUI
- 2. Find the instrument:

System \rightarrow More \rightarrow Connections

Serial number	CRC	Model I
simulator		simulate
	simulator	simulator

- number and click Connect
- 4. If no hardware is available then simulator can be selected instead. See section Section C 11. Simulation Mode (page 77) for details.

SCPI
SYSTEM:DISCOVER?
SYSTEM:CONNECT <name></name>

2.1. System Reset

To reset the eVNA system (software and hardware) to its default state, for example to start a new measurement configuration from scratch: System \rightarrow Preset \rightarrow OK

SCPI SYSTem:PRESet:MODE USER

Figure 9: eVNA Studio connection screen showing all available instruments

3. If multiple eVNA-63+ instruments are connected to the PC, select the correct unit by serial

3. Channels & Traces

The eVNA supports up to 16 measurement channels with up to 16 traces per channel. Measurement and formatting operations are applied to specific channels and traces so it is important to make sure the relevant channel / traces is selected as the active one when making settings changes.

3.1. Channels

Whilst all channels have to share physical resources, they can be thought of as completely independent measurement setups, analogous to having a separate eVNA for each measurement set. Each channel can be configured with different cal sets and stimulus settings.

3.1.1. Channel Setup

Additional channels can be added one at a time using the menu. The Status Bar indicates the number of available channels and which one is currently active.

Channel / Trace \rightarrow Channel \rightarrow Allocate Channel

Alternatively, the required number of channels can be specified by opening the Num Channels setting:

Channel / Trace \rightarrow Channel \rightarrow Num Channels

4

Num Channels

 \sim

SCPI DISPlay:CHANnel <number> DISPlay:CHANnel:ACTivate

3.1.2. Active Channel

Most measurement operations and eVNA settings are applied to the active channel. If the required channel is included in the current screen display then clicking it will set it as the active channel. Alternatively, the channel number can be specified by opening the Active channel setting:

Channel / Trace \rightarrow Channel \rightarrow Active

The Previous and Next buttons can be used to quickly toggle between available channels and set each one as active in turn: Channel / Trace \rightarrow Channel \rightarrow Previous Channel / Trace \rightarrow Channel \rightarrow Next **3.1.3. Channel Display**

The eVNA Studio GUI can be configured to show a single channel or multiple channels, arranged side by side. The menu presents a list of icons which approximately show the number and arrangement of the channels on screen, up to a 4 x 4 grid for all 16 channels (select the More button to scroll through the full list of options). Channel / Trace \rightarrow Channel \rightarrow Channel Layout \rightarrow ...

To quickly maximize the current channel to occupy the full screen, select:

Channel / Trace \rightarrow Channel \rightarrow Max

SCPI DISPlay:CHANnel:SPLit <value>

3.2. Traces

Within each channel, multiple traces can be configured to display the measured data. Each trace is a separate data plot but all are generated from the same data set captured for the given channel. Traces within a channel all share the same calibration and stimulus settings but can be configured to show different graphs and formats, derived from the same data.

3.2.1. Trace Setup

Additional traces can be added one at a time using the menu. The Status Bar indicates the number of available traces and which one is currently active.

Channel / Trace \rightarrow Trace \rightarrow Allocate Trace

Alternatively, the required number of traces can be specified by opening the Num Traces setting:

Channel / Trace \rightarrow Trace \rightarrow Num Traces

Num Traces	5	\sim
------------	---	--------

3.2.2. Active Trace

Trace configurations (for example setting the measurement type) are applied to the active trace. Any trace can be designated as the active one by clicking on its summary text in the top-left of the trace display, or by selecting the trace number through the menu:

Channel / Trace \rightarrow Trace \rightarrow Active \rightarrow n

The Previous and Next buttons can be used to quickly toggle between traces and set each one as active in turn:

Channel / Trace \rightarrow Trace \rightarrow Previous

Channel / Trace \rightarrow Trace \rightarrow Next

SCPI

DISPlay:CHANnel:TRACe <number> DISPlay:CHANnel:TRACe[:STATe] 1

3.2.3. Trace Display

The $\neq \neq$ GUI can be configured to show multiple traces in the same display, or spread over multiple trace displays. The menu presents a list of icons which approximately show the number and arrangement of the traces on screen, up to a 4 x 4 grid for all 16 traces (select the More button to scroll through the full list of options). Channel / Trace \rightarrow Trace \rightarrow Trace Layout \rightarrow ...

To quickly maximize the current channel to occupy the full screen, select: Channel / Trace \rightarrow Trace \rightarrow Max

SCPI DISPlay:SPLit <value>

4. Frequency & Power Stimulus Settings

The stimulus settings define the frequency and power of the output ports and any parameters related to the measurement sweep. During normal operation the sweep output is always active but the RF output can be turned off if necessary. To toggle the RF output on or off: Stimulus \rightarrow Sweep Setup \rightarrow Power Menu \rightarrow RF Out

SCPI OUTPut[:STATe] <0|1>

4.1. Frequency Sweeps

The eVNA can operate a frequency sweep with linear or logarithmic values plotted. The default condition is a linear frequency sweep. To configure a frequency sweep:

1. Set the relevant frequency sweep type:

Stimulus \rightarrow Sweep Setup \rightarrow Sweep Type \rightarrow Lin Freq | Log Freq

2. Set the frequency sweep range, either in terms of start and stop frequencies, or center and span values

Stimulus \rightarrow Start | Stop | Center | Span

Frequency	300	KHz	\sim	\sim	\checkmark X
-----------	-----	-----	--------	--------	----------------

3. Set the number of discrete measurement points required for the sweep (increasing the number of points increases the resolution of the data but takes longer to complete the measurement)

Stimulus \rightarrow Sweep Setup \rightarrow Sweep Type \rightarrow Points

Points	200			/	\checkmark	X	
--------	-----	--	--	---	--------------	---	--

4. The current sweep settings are displayed in the status bar:

Start: 300K Hz Stop: 6 GHz Center: 3.00015 GHz Span: 5.9997 GHz

SCPI

SENSe:SWEep:TYPE <LINear|LOGarithmic> SENSe:FREQuency:STARt <frequency> SENSe:FREQuency:STOP <frequency> SENSe:FREQuency:CENTer <frequency> SENSe:FREQuency:SPAN <frequency> SENSe:SWEep:POINts <number>

4.1.1. Sweep Power Level

The default output power level for the sweep is 0 dBm. This can be adjusted as required for the DUT test scenario, for example to improve signal to noise ratio (SNR) by increasing the port power level, or to protect a sensitive DUT by remaining within its input power rating.

Caution:

Review the power ratings of all devices connected in the test path before selecting an output power level

To set the power level for both ports to the same value, open the simultaneous power input setting:

Power Level 5	dBr	n 🗸	^ ∨	
Ports 1 & 2 can be o toggle port cou Stimulus → Sweep	ipling on a	ind off:	·	
Power Level: 5 dBm	1	Port Co	ouple: No	
o set the power le Stimulus → Swee			• •	
Port 1 power 5	dBr	n 🗸	^ ~	
Note: • If port coupli	ng is enab	oled the	n this po	v

SCPI

SOURce:POWer[:LEVel][:IMMediate][:AMPLitude] SOURce:POWer:PORT:COUPle <0|1> SOURce:POWer:PORT <1|2> SOURce:POWer:PORT[:LEVel][:IMMediate][:AMPLitude] <power>

4.1.2. Sweep Power Slope

The port power level for the sweep can be set to have a positive slope with frequency (specified in dB / GHz). To configure the slope:

1. Specify the slope value

Stimulus \rightarrow Sweep Setup \rightarrow Power Menu \rightarrow Slope Value

- 2. Toggle the slope on and off as needed Stimulus \rightarrow Sweep Setup \rightarrow Power Menu \rightarrow Slope
- 3. The current configuration is indicated in the status bar

\checkmark X

settings can be applied individually to each port.

Port Couple

open the power input setting for that port: Port Power \rightarrow Port 1 Power | Port 2 Power

 \checkmark X

wer setting will be applied to both ports.

//Power on both ports // Uncouple / couple // Specify port // Power on port above

4.2. Power Sweeps

Setting the stimulus to power sweep mode allows measurement of a DUT response to increasing power level, for example to plot the compression point of an amplifier. To configure a power sweep:

1. Set the sweep type to power sweep:

Stimulus \rightarrow Sweep Setup \rightarrow Sweep Type \rightarrow Power

2. Set the fixed frequency for the sweep:

Stimulus \rightarrow Sweep Setup \rightarrow Power Menu \rightarrow Sweep Frequency

Sweep Frequency	1	GHz	\sim	\sim	\checkmark	X
-----------------	---	-----	--------	--------	--------------	---

3. Set the power sweep range, either in terms of start and stop power levels, or center and span values

Stimulus \rightarrow Start	Stop	Center	Span
------------------------------	------	--------	------

Power	10	dBm	\sim	^	\sim	\checkmark	X
-------	----	-----	--------	---	--------	--------------	---

4. Set the number of discrete measurement points required for the sweep (increasing the number of points increases the resolution of the data but takes longer to complete the measurement)

Points 200 ^ V	×
----------------	---

5. The current sweep settings are displayed in the status bar:

Start: -32 dBm	Stop: 10 dBm	Center: -11 dBm	Span: 42 dB

SCPI

SENSe:SWEep:TYPE POWer SENSe:FREQuency[:CW|FIXed] <frequency> SOURce:POWer:STARt <power> SOURce: POWer:STOP <power> SOURce:POWer:CENTer <power> SOURce:POWer:SPAN <power> SENSe:SWEep:POINts <number>

4.3. Segmented Frequency Sweep

Segmented sweeps allow a compromise to be made between data resolution and overall sweep time, by setting the measurement points in a sweep to be focussed at the particular frequency ranges of the DUT characteristic where the highest resolution is required. The sweep for a band pass filter measurement for example, could be configured to have more points in the transition regions where a large variation in data is expected, with fewer points in the pass band and far into the stop band. To configure a segmented sweep:

1. Open the segment table

Stimulus \rightarrow Sweep Setup \rightarrow More \rightarrow Edit Segment Table

Start	Stop	Number of points	IF BW	Power Leve
1 300 kHz	2 GHz	51	1 kHz	-50 dBm
2 2.000000001 GHz	3 GHz	101	1 kHz	-50 dBm
3 3.000000001 GHz	6 GHz	51	1 kHz	-50 dBm
4				
Center / Span				
Center / Span				
) Center / Span) Start / Stop				
isplay Mode) Center / Span) Start / Stop ptional Fields] IF BW	✓ Power Level			

values or center / span values

Display Mode Center / Span Start / Stop

settings will be applied for any options left unchecked.

Optional Fields	
 ✓ IF BW Delay Time 	Power Level

		×
	ep Mode	
Fast		
Fast		
Fast	1	
	0	
	Car	icel

2. Set the display mode to specify whether frequency ranges will be entered as start / stop

3. Check any optional fields (IF bandwidth, delay, sweep time, power level, sweep mode) required to configure those parameters individually for each segment. The global sweep

- 4. Enter the frequency range, number of points and any optional parameters required in the table
- 5. To delete any row, click on it and then use the delete key
- 6. The segment table can be saved to a CSV file as a back-up and to allow easy recall for future test sessions, click the "Export To..." button and specify the filename. Use the "Import To..." button to recall a previous CSV file.

- 7. Click Apply, then OK to apply the sweep segment configuration
- 8. Set the sweep type to segmented Stimulus \rightarrow Sweep Setup \rightarrow Sweep Type \rightarrow Segmented

Note:

Sweep segment frequency ranges must be unique and cannot overlap

SCPI SENSe:SWEep:TYPE SEGMent SENSe:SEGMent:DATA < ... >

// Array of data values (refer to programming manual)

4.3.1. Linear & Order-Based Trace Display

The segmented sweep trace can be switched between linear and order-based displays. The linear display maintains the typical x-axis frequency scale, with gaps in the trace for any frequency ranges not included in the segment table. The order-based display shows a single continuous trace, with the x-axis divided equally over the total number of measurement point. The x-axis is not a continuous scale in order-based mode so no frequency labels are displayed but markers can be used to identify key frequencies.

To toggle between linear and order-based displays:

Stimulus \rightarrow Sweep Setup \rightarrow More \rightarrow Segment Display

Segment Display Order Based

SCPI

DISPlay:CHANnel:X:SPACing <LINear|OBASe>

4.4. Advanced Sweep Settings

Sweep parameters can be further optimized based on the measurement application, including sweep speed and trigger responses.

4.4.1. Fast Sweep Mode

VNA performance is typically a trade-off between best accuracy and fastest measurement time. By default, the eVNA is configured in "normal" mode for best measurement accuracy. "Faster" mode can be selected to optimize for a faster frequency sweep, at the expense of marginally reduced accuracy.

To toggle between fast and normal sweep modes: Stimulus \rightarrow Sweep Setup \rightarrow More \rightarrow Sweep Mode

Sweep Mode	Fast	\sim	

SCPI

SENSe:SWEep:GENeration < STEPped|FSTepped>

4.4.2. Sweep Time Period

The eVNA allows a specific time period to be requested for the sweep. If the requested period is longer than the minimum period required (based on the current sweep configuration), the sweep will be slowed down to fit the request. If the time period requested is shorter than the minimum possible period, the sweep will run at the fastest speed and the actual time taken will be reported in the status bar. To request a specific sweep time period: Stimulus \rightarrow Sweep Setup \rightarrow Requested Sweep Time

Requested Sweep Time	2	ms	\sim	/

Requested Sweep Time: 2 ms Actual Sweep Time: 20.1 ms

To reset to automatic sweep time period (toggles on and off): Stimulus \rightarrow Sweep Setup \rightarrow Auto Sweep Time

SCPI SENSe:SWEep:TIME:AUTO <0|1> SENSe:SWEep:TIME[:DATA] <time>

4.4.3. Sweep Delay

An arbitrary time delay can be inserted before a sweep commences to allow for any settling time required by the DUT: Stimulus \rightarrow Sweep Setup \rightarrow Sweep Delay

// Normal / fast mode

Sweep	Del	lay
-------	-----	-----

sec	\sim	\sim	X

SCPI SENSe:SWEep:DELay

4.4.4. Spur Suppression

The eVNA automatically removes certain low-level, narrow band, spurious signals from the measurement data to improve measurement guality. These signals are typically generated due to spurious interactions between the internal timing functions of the eVNA. For measurement of a very narrow band DUT (in the order of 1 kHz) it may be necessary to disable the spur suppression to ensure accurate measurements.

To toggle the automatic spur suppression on and off:

1

Stimulus \rightarrow Sweep Setup \rightarrow More \rightarrow Avoid Spurious

Avoid Spurious: No

4.5. Sweep Triggers

Measurement sweeps commence in response to a trigger signal. By default, the eVNA is set to the internal trigger source in continuous mode, meaning sweeps repeat continuously.

4.5.1. Trigger Source

The eVNA supports 4 trigger sources:

- 1. Internal Default mode, sweeps run continuously
- 2. External Sweeps are triggered by a TTL signal on the Trig In port
- 3. Manual Sweeps are triggered using the Trigger button in the eVNA GUI
- 4. SCPI Sweeps are triggered by a SCPI command sent using the API connection

To select the trigger source:

Stimulus \rightarrow Trigger \rightarrow More \rightarrow Trigger Source

To initiate a trigger signal in Manual mode: Stimulus \rightarrow Trigger \rightarrow More \rightarrow Trigger

To insert a fixed time delay in External mode, between an external trigger input being received and the sweep commencing (1 second max): Stimulus \rightarrow Trigger \rightarrow More \rightarrow Ext Trig Delay

Exit Trig Delay	15	ps	\sim	1

The trigger scope can be toggled between all channels and the active channel only: Stimulus \rightarrow Trigger \rightarrow More \rightarrow Trigger Scope

 $\sim \times$ Trigger Scope Active

SCPI

TRIGger:[SEQuence]:SOURce <INTernal|EXTernal|MANual|BUS> TRIGger:[SEQuence][:IMMediate] // Initiate trigger (manual mode) TRIGger:EXTernal:DELay <time> TRIGger:[SEQuence]:SCOPe <ALL|ACTive>

4.5.2. Trigger Mode

The trigger mode controls the sweep repetition in response to a trigger signal, the options are:

- 1. Continuous The sweep restarts on the active channel with every trigger signal
- 2. Hold Pauses the sweep on the active channel (measurement traces remain static on the display)
- 4. Hold All Channels Pauses the sweep on all channels

5. Continuous All Channels – The sweep restarts on all channels with every trigger signal The trigger mode options are selected at:

Stimulus \rightarrow Trigger \rightarrow ...

The default behaviour is for a complete sweep to run for each trigger signal. Alternatively, the trigger can be toggled to point mode, where each trigger signal initiates a single measurement. To toggle between sweep and point triggers: Stimulus \rightarrow Trigger \rightarrow More \rightarrow Point Trigger The current sweep can be aborted with:

3. Single – A single sweep is run for each trigger signal (the trigger mode then switches to Hold)

Stimulus \rightarrow Trigger \rightarrow More \rightarrow Abort

SCPI INITiate:CONTinuous <1|0> TRIGger:[SEQuence]:POINt <0|1> **ABORt**

// Internal / Continuous (1) or Manual / Hold (0)

5. Measurement & Data Formatting

5.1. Measurement Types

The eVNA supports a number of measurement types, as summarized in table 3. Full 2-port, 2-path s-parameter measurements are available (S11, S12, S21, S22) as well as the absolute signal levels at each receiver.

These measurement types can be specified using:

Response \rightarrow Measure \rightarrow ...

Measurement Type	Description
S11	S-parameter measurement (reflected / incident at port 1). Typically, input return loss for a 1-port device.
S21	S-parameter measurement (transmitted at port 2 / incident at port 1). Typically, forward loss for a 2-port device.
S12	S-parameter measurement (transmitted at port 1 / incident at port 2). Typically, reverse loss / isolation for a 2-port device.
S22	S-parameter measurement (reflected / incident at port 2). Typically, output return loss for a 2-port device (or input return loss for a 1-port device on port 2).
Absolute → A1	Absolute signal level at port 1, when sourced from port 1
Absolute → A2	Absolute signal level at port 1, when sourced from port 2
Absolute → B1	Absolute signal level at port 2, when sourced from port 1
Absolute → B2	Absolute signal level at port 2, when sourced from port 1
Absolute → R11	Absolute reference level at port 1, when sourced from port 1
Absolute → R12	Absolute reference level at port 1, when sourced from port 2
Absolute → R21	Absolute reference level at port 2, when sourced from port 1
Absolute → R22	Absolute reference level at port 2, when sourced from port 1

Table 3: Summary of measurement types supported by the eVNA

SCPI

CALCulate:PARameter:DEFine S11|S21|S12|S22|A|B|R1|R2 CALCulate:PARameter:SPORt 1|2

// Set measurement // Set source port

5.2. Graph Types

Graphical displays can be configured in a range of formats to suit the measurement type, as summarized in the following sections. Where applicable, the preferred phase unit can be set between degrees or radians:

- 1. Open the phase units setting:
 - Response \rightarrow Format \rightarrow More \rightarrow Phase Units
- 2. Specify the required units:

Response \rightarrow Format \rightarrow More \rightarrow Phase Units

Phase Units	Radians	\sim	×	N
	Degrees			
	Radians			

5.2.1. X-Y Plots

The eVNA supports the data formats summarized in table 4, on a standard rectangular x-y plot. Measurement results are plotted on the y-axis against stimulus values (typically frequency) on the x-axis.

Each of these options can be set using:

Response \rightarrow Format \rightarrow ...

Format	Description
Log Mag	Logarithmic magnitude (dB)
Lin Mag	Linear magnitude
Real	Real component
Imaginary	Imaginary component
Phase (Deg)	Phase (degrees), "wrapped" to a
Phase (Rad)	Phase (radians), "wrapped" to a
Positive Phase	Phase (degrees or radians), "wra
Expanded Phase	Expanded / continuous / "unwra
Group Delay	Group delay (seconds)
SWR	Standing wave ratio

SCPI

CALCulate[:SELected]:FORMat MLOG|MLIN|PHASe|GDELay|UPHase|PPHase|SWR|REAL|IMAGinary CALCulate[:SELected]:PHASe DEGrees|RADians // Set phase if required

appear on a 1 cycle, ±180 degrees scale

appear on a 1 cycle, $\pm \pi$ radians scale

rapped" to appear on a 1 cycle, 0 to 360 degrees or 0 to 2π radians scale

rapped" phase, presents a clear view of phase linearity

Table 4: Rectangular plot data options

5.2.2. Polar Plots

Polar plots are available to display complex magnitude and phase data, as shown in figure 10. The magnitude of the measured data is the radial distance from the reference point at the center of the diagram. The phase angle is measured counter-clockwise from the reference axis (indicated as 0 degrees on the plot). Since polar plots do not include a frequency parameter, markers can be used to indicate significant frequencies and data. Table 5 summarizes the marker data options for the polar plot. To enable the polar plot and specify the marker data:

Response \rightarrow Format \rightarrow More \rightarrow Polar \rightarrow ...

Format	Description
Lin / Phase	Markers summarize linear magnitude and phase (degrees or radians)
Log / Phase	Markers summarize dB magnitude and phase (degrees or radians)
Real / Imag	Markers summarize real and imaginary values

Figure 10: Polar plot representation for a 2.4 GHz BPF S11, with markers set at key frequencies

SCPI

CALCulate:PARameter:DEFine S11|S21|S12|S22|A|B|R1|R2 CALCulate:PARameter:SPORt 1|2

// Set measurement // Set source port

5.2.3. Smith Charts

The Smith chart is plotted on the complex reflection coefficient plane and scaled in normalized impedances. Similar to the polar plot, frequencies can be indicated using markers since there is no frequency parameter on the Smith chart. Table 6 summarizes the marker data options for the Smith chart.

To enable the Smith chart and specify the marker data: Response \rightarrow Format \rightarrow More \rightarrow Smith \rightarrow ...

Format	Description
Lin / Phase	Markers summarize linear mag
Log / Phase	Markers summarize dB magnit
Real / Imag	Markers summarize real and im
R + jX	Markers summarize resistance
G + jB	Markers summarize conductan
·····	

Figure 11: Smith chart representation for a BPF S11, with markers set at key frequencies

SCPI

CALCulate[:SELected]:FORMat SLINear|SLOGarithmic|SCOMplex|SMITh|SADMittance CALCulate[:SELected]:PHASe DEGrees|RADians

- gnitude and phase (degrees or radians)
- tude and phase (degrees or radians)
- maginary values
- and reactance values
- nce and susceptance values

Table 6: Smith chart data options

// Set phase if required

Plotting S11 enables the input impedance of a device to be determined over frequency. The closer to the center of the Smith chart the trace is, the closer matched to the 50Ω characteristic impedance. The annotated Smith chart of figure 12 summarizes the characteristics which can be observed. The impedance only has a real resistive component if it lies directly on the x-axis, from 0Ω at the left-hand edge, 50Ω in the center, to infinity on the right-hand edge. If there is an imaginary reactive component to the impedance (either capacitive or inductive), the impedance will have an x-axis and y-axis component to it.

Figure 12: Annotated Smith chart plot

5.3. Electrical Delay

A custom electrical delay can be set to shift the phase of the measured data. This feature can be useful for observing the deviation from linear phase.

To move the reference place:

1. Select the electrical delay properties

Response \rightarrow Scale \rightarrow More \rightarrow Electrical Delay

ee Electrical Delay					×
Electrical Delay					
Delay					
Delay Length	0	m	\sim		
Delay Time	0	ps	\sim		
Velocity Factor	1				
Media					
Coaxial]
 Waveguide C 	utoff Frequency	y 2.488		GHz	\sim
ОК	Арр	ly	Car	ncel	

- time must be between -10 and +10 seconds.
- 3. Adjust the velocity factor for the medium as required
- be specified for waveguide).
- 5. Click Apply and OK to set the electrical length

SCPI

CALCulate[:SELected]:CORRection:EDELay:MEDium <COAXial|WAVeguide> CALCulate[:SELected]:CORRection:EDELay:TIME <value> CALCulate[:SELected]:CORRection:EDELay:WGCutoff <value>

5.4. Scaling

Table x summarizes the options for adjusting the scale on the y-axis. The Auto Scale features are convenient for quickly adjusting the graph to fit the current measurement but a number of specific customization options are also available. To access the scale options:

Response \rightarrow Scale \rightarrow ...

Scale Option	Description
Auto Scale	Automatically adjust the y-axis
Auto Scale All	Automatically adjust the y-axis
Divisions	Set the number of divisions / in
Scale / Div	Set the scale (eg: the number o
Reference Position	Set the position of the referenc
Reference Value	Set the reference line value (the
Marker → Reference	Set the reference line value to t Note: requires at least 1 marker

SCPI

DISPlay:WINDow:TRACe:Y[:SCALe]:AUTO DISPlay:WINDow:Y[:SCALe]:DIVisions DISPlay:WINDow:TRACe:Y[:SCALe]:PDIVision <value> DISPlay:WINDow:TRACe:Y[:SCALe]:RPOSition <divisions> DISPlay:WINDow:TRACe:Y[:SCALe]:RLEVEL <value> CALCulate[:SELected]:MARKer:SET RLEVel

2. Specify the electrical delay time required. If delay length is known instead, enter this and the software will automatically calculate and populate the equivalent delay time value. Delay

4. The media type can also be set between coaxial and waveguide (the cut-off frequency must

- on the active trace to best present the data on all traces to best present the data ncrements on the vertical scale
- of dB) per division / increment on the y-axis
- ce line based on number of divisions from the bottom of the trace screen
- e y-axis data value at which the reference line intersects the y-axis)
- the data value indicated by the active marker
- er to be active on the trace

// Auto Scale // Divisions // Scale / Div // Reference Position // Reference Value // Marker \rightarrow Reference

5.5. Averaging

Averaging provides a means to reduce the fluctuations in measurement traces attributable to random noise, allowing a more consistent trace to be presented.

5.5.1. Sweep Averaging

With sweep averaging enabled, each discrete data point in a sweep is calculated as an average across a set number of sweeps, therefore minimizing the effect of any random noise fluctuations on the data. This enables a trade-off to be made between measurement speed and measurement accuracy.

To enable data averaging:

1. Specify the number of sweeps over which measurements should be averaged (from 1 to 999): Response \rightarrow Avg \rightarrow Factor

Factor 16

2 Toggle averaging mode on or off:

Response \rightarrow Avg \rightarrow Averaging

The averaging can be restarted if required, to clear all saved averages and begin re-calculating, using: Response \rightarrow Avg \rightarrow Restart

SCPI SENSe:AVERage:COUNt <number> SENSe:AVERage[:STATe] <0|1> SENSe:AVERage:CLEar

5.5.2. Trace Smoothing

Trace smoothing is distinct from sweep averaging. A moving average is calculated from consecutive points along a single sweep in order to smooth out sudden variations in signal levels. Consequently, measurement speed is faster than the sweep averaging method but there can be a significant reduction in measurement accuracy, particularly for higher smoothing factors. Trace smoothing is usually not recommended.

To enable trace smoothing:

1. Specify the smoothing aperture (from 1.5 to 25):

Response \rightarrow Avg \rightarrow Smoothing Aperture

Smoothing Aperture 25 $\wedge \lor \checkmark \times$ 2. Toggle smoothing on or off:

Response \rightarrow Avg \rightarrow Smoothing

SCPI

CALCulate[:SELected]:SMOothing:APERture <number> CALCulate[:SELected]:SMOothing[:STATe] <0|1>

5.5.3. IF Bandwidth

IF bandwidth can be adjusted to trade measurement accuracy against measurement speed. Narrower bandwidths reduce the incidence of random noise on the measurement, increasing the signal to noise ratio. Part of the effect of a narrower IF bandwidth is an increase in data sampling for each point in a sweep, therefore slowing down measurement speed. Wider bandwidths allow a faster measurement speed but at the expense of noise and therefore measurement accuracy.

To set the IF bandwidth (from 1 Hz to 500 kHz): Response \rightarrow Avg \rightarrow IF Bandwidth

10 kHz IF Bandwidth

6. Markers

Markers provide a flexible set of options for highlighting significant data points and statistics, performing calculations and searching for particular signal characteristics. The eVNA supports up to 9 markers per trace.

6.1. Marker Setup

Up to 9 markers can be added to each trace at specific frequencies:

1. Select the relevant marker (1 to 9), if the marker doesn't already exist it will be placed on the graph at the sweep center frequency Markers / Analysis \rightarrow Setup \rightarrow Marker

- 2. The marker frequency can be adjusted by overwriting the frequency in the settings bar
- To add additional markers or switch between existing markers, select the marker in the same way as above
- 4. Markers will display the frequency and the corresponding data value in the top-left of the trace display

SCPI

CALCulate [:SELected]: MARKer <number> CALCulate [:SELected]: MARKer: ACTivate CALCulate [:SELected]: MARKer: X <stimulus> CALCulate [:SELected]: MARKer [:STATe] <0|1> CALCulate [:SELected]: MARKer: Y?

- same way as above
- trace display

6.2. Moving Markers

Markers can be moved on the trace by editing the frequency input or by clicking and dragging the triangular marker indicator on the trace. By default, the markers are in discrete mode so will only settle on actual measured frequencies when dragging. Each marker can alternatively be set to continuous mode to allow them to be dragged and settle on interpolated frequency points between the measured data: Markers / Analysis \rightarrow Function \rightarrow Discrete

The current marker mode for the active marker is shown in the settings bar:

Channel / Trace Response Stimulus

Discrete: Continuous Couple: Yes

The current marker mode for the active marker is shown in the settings bar:

SCPI CALCulate [:SELected]: MARKer: X <stimulus> CALCulate [:SELected]: MARKer: DISCrete <0|1>

// Specify marker number // Set as the active marker // Specify the stimulus value // Disable or enable the marker // Read the marker value

2. The marker frequency can be adjusted by overwriting the frequency in the settings bar 3. To add additional markers or switch between existing markers, select the marker in the

4. Markers will display the frequency and the corresponding data value in the top-left of the

// Specify the stimulus value // Set continuous/discrete mode

6.3. Clear Markers

To remove an individual marker from the trace: Markers / Analysis \rightarrow Setup \rightarrow More \rightarrow Clear \rightarrow Marker n

To remove all markers from the trace: Markers / Analysis \rightarrow Setup \rightarrow More \rightarrow Clear \rightarrow All Off

SCPI CALCulate [:SELected]: MARKer [:STATe] 0

// Disable the marker

6.4. Marker Coupling

TMarkers can be coupled together across multiple traces within a single channel, to allow them to be moved simultaneously on the respective traces. A typical example would be a configuration with S11 and S21 displayed side by side, coupling the markers together allows any change in frequency made to the marker position on the S11 trace to be mirrored on the S21 trace.

Only markers with the same number are coupled and coupling is applied independently for each marker number. For example:

- Marker 1 on trace 1 will couple to marker 1 on every other trace
- Marker 1 on trace 1 cannot be coupled with marker 2 on any trace

To enable marker coupling:

- 1. Set up multiple traces
- 2. Add the required markers on each trace (ensuring markers with the same number are used where coupling is required)
- 3. Select the marker to be coupled (on any of the traces) Markers / Analysis \rightarrow Setup \rightarrow Marker n
- 4. Toggle coupling on for that marker

Markers / Analysis \rightarrow Function \rightarrow Couple

5. The Couple setting can be toggled again to disable coupling, with the current status displayed in the settings bar

Channel / Trace Response Stimulus

Discrete: Continuous Couple: Yes

SCPI CALCulate [:SELected]: MARKer: COUPle <0|1> // De-couple / couple the marker

6.5. Reference Marker & Delta Mode

In normal mode each marker displays the frequency to which it is pinned and the corresponding y-axis measurement value. In delta mode, the marker displays the delta between the measurement value and a reference value. The reference marker readout shows the pinned frequency and measurement value, with any delta markers showing the delta. Each of markers 1 to 9 can be individually toggled between normal and delta mode but only one reference level can be set for all markers. Figure 13 shows an example trace with markers in normal mode and figure 14 shows the same trace with the markers set to delta mode.

Figure 13: S11 trace with markers 1 & 2 in normal mode

SCPI

CALCulate [:SELected]: MARKer: REFerence [:STATe] <0|1> CALCulate [:SELected]: MARKer: ACTivate CALCulate [:SELected]: MARKer: X <stimulus> CALCulate [:SELected]: MARKer [:STATe] <0|1>

Figure 14: S11 trace with markers 1 & 2 in delta mode from the reference marker

// Disable / enable reference marker // Set as the active marker // Specify the stimulus value // Disable or enable the marker

6.6. Scale Axis from Marker Position

Markers can be used to quickly adjust the scaling on the x and y-axis based on the current marker position. The scale options are summarized in table below can be accessed using: Markers / Analysis \rightarrow Function \rightarrow ...

Scale Option	Description
Marker \rightarrow Start	Set sweep start frequency to the frequency of the active marker
Marker → Stop	Set sweep stop frequency to the frequency of the active marker
Marker \rightarrow Center	Set sweep center frequency to the frequency of the active marker, the current span will be maintained
Marker → Reference	Set the reference line value (the y-axis data value at which the reference line intersects the y-axis) to the data value of the active marker
Marker \rightarrow Delay	Change the line length at the receiver input to remove the phase slope at the marker position

SCPI

CALCulate [:SELected]: MARKer: SET < STARt | STOP | CENTer | RLEVel | DELay>

6.7. Marker Searches

Marker searches allow specific data points and frequencies to be highlighted automatically based on characteristics of the measured data.

6.7.1. Marker Tracking

By default, the search is run only at the point of selecting the option from the menu. The marker frequency will then remain static even if the measured data subsequently changes. Alternatively, marker tracking can be enabled to force the search to run again after each measurement sweep.

To toggle marker tracking on / off:

Markers / Analysis \rightarrow Search \rightarrow Tracking

Tracking: Yes

SCPI CALCulate [:SELected]: MARKer: FUNCtion: TRACking

6.7.2. Search Range

Marker searches can be configured to look across the entire sweep range (default behaviour), or within a specific sub-range.

To set the range type:

Markers / Analysis \rightarrow Search \rightarrow Search Range \rightarrow Search Range

Search Range Arbitrary Range 🗸 🗙

Start and stop values must be specified for an arbitrary sweep range: Markers / Analysis \rightarrow Search \rightarrow Search Range \rightarrow Start | Stop

GHz 🗸 🔨 🔨 🗙 Start 2.3

SCPI

CALCulate [:SELected]: MARKer: FUNCtion: DOMain [:STATe] <0|1> CALCulate [:SELected]: MARKer: FUNCtion: DOMain: STARt <value> CALCulate [:SELected]: MARKer: FUNCtion: DOMain: STOP <value>

6.7.3. Search Coupling

Marker searches can be coupled together across multiple traces within a single channel, allowing one search to be specified for all traces. Markers with the same number are coupled. To toggle marker search coupling on and off: Markers / Analysis \rightarrow Search \rightarrow Search Range \rightarrow Couple

SCPI

CALCulate [:SELected]: MARKer: FUNCtion: DOMain: COUPle <0[1>

6.7.4. Max / Min Search

Moves the active marker to the frequency of the maximum or minimum data point trace: Markers / Analysis \rightarrow Search \rightarrow Max | Min

6.7.5. Peak Search

To specify the peak polarity (positive, negative or both): Markers / Analysis \rightarrow Search \rightarrow Peak \rightarrow Peak Polarity

Peak Polarity Positive

// Entire (0) or arbitrary (1) // Start for arbitrary range // Stop for arbitrary range

To search the nearest peak to the current marker frequency: Markers / Analysis \rightarrow Search \rightarrow Peak \rightarrow Search Peak Left | Search Peak Right

Note:

• The marker will not move if it is already located on a relevant peak

The peak excursion value can be adjusted from the default value (3 dB) if required. This is the value by which a peak must deviate from the previous crest / trough to be considered a peak. A higher value is beneficial with noisy measurement traces to prevent all noise picks appearing in the search. To set the excursion value:

Markers / Analysis \rightarrow Search \rightarrow Peak \rightarrow Peak Excursion

6.7.6. Target Search

Target searches allow a specific measurement data value to be found on the trace. To configure a target search:

Set the target value

Markers / Analysis \rightarrow Search \rightarrow Target \rightarrow Target Value

Target Value 0 dB	\sim	\wedge \vee	· 🗸	X	
-------------------	--------	-----------------	-----	---	--

Specify whether the target value should be searched on a positive or negative transition (or both)

Markers / Analysis \rightarrow Search \rightarrow Target \rightarrow Target Transition

To search the nearest target value to the current marker frequency: Markers / Analysis \rightarrow Search \rightarrow Target \rightarrow Target

Note:

- The marker will not move if it is already located on a relevant target
- The search can also be run for the next target to the left or right of the current marker frequency:

Markers / Analysis \rightarrow Search \rightarrow Target \rightarrow Search Left | Search Right

Peak Excursion	3	dB	\sim	\sim	
----------------	---	----	--------	--------	--

6.7.7. Bandwidth Search

The bandwidth search displays the following parameters for a trace, based on the current marker position, useful for plotting the pass band of a DUT: Markers / Analysis \rightarrow Search \rightarrow Search Range \rightarrow Couple

- Center frequency
- Lower frequency cut-off
- Higher frequency cut-off
- Pass bandwidth
- Insertion loss at the marker position
- Q value, calculated as:

Center Frequency O = -Passband

To enable the bandwidth search for a marker:

1. Set the bandwidth value

Markers / Analysis \rightarrow Search \rightarrow More \rightarrow Bandwidth Value

Bandwidth Value	3	dB	$\mathbf{\vee}$	~	\checkmark	
-----------------	---	----	-----------------	---	--------------	--

 \checkmark X

eVNA-63+ USER GUIDE - C - PRACTICE | 64

- 2. Drag the marker or set its stimulus value to the trace section where bandwidth is to be analyzed
- 3. Toggle the bandwidth search and marker display on or off

Markers / Analysis \rightarrow Search \rightarrow Bandwidth

4. The bandwidth values are displayed with the marker in the top-left corner of the trace:

Tr1 S21 Logarithmic 10 />> 0 D						
0	1 2.4001800 GHz -0.5917 dB					
-10 -	Bandwidth Parameters Bw: 79.2816965878248 MI cent: 2.39935521064289 GI low: 2.35971436234898 GI					
-20 -	high: 2.4389960589368 GH; Q: 30.2636713630994 loss: -0.59172 dB					

6.7.8. Notch Search

The notch search displays the following bandwidth parameters for a trace, searching for the first notch to the left of the current marker position:

- Center frequency
- Lower frequency cut-off
- Higher frequency cut-off
- Notch bandwidth

O =

- Insertion loss at the marker position
- Q value, calculated as:

Center Frequency

Passband

To enable the notch search for a marker:

1. Set the notch value

Markers / Analysis \rightarrow Search \rightarrow More \rightarrow Notch Value

Notch Value	-3	dB	\sim	\sim

- 2. Toggle the notch search and marker display on or off Markers / Analysis \rightarrow Search \rightarrow More \rightarrow Notch

Tr1 S21	Logarithm	nic 10 / 🕨 0 D
0 📐		
	<mark>1</mark> 2.	6500000 GHz -37.20
	Notch Pa	arameters
-10 –	Bw:	119.653896385065 MF
	cent:	2.56938268943206 GF
	low:	2.50955574123953 GF
-20 -	high:	2.62920963762459 GF
-20 -	Q:	21.4734560850687
	loss:	-37.20489 dB

7. Memory Calculations (Memory Math)

The current sweep trace can be saved to memory and used as a reference for calculations against later sweeps. A common application for this feature is "normalization" of data, where the reference trace is divided from the latest measurement in order to plot deviations from the reference.

To normalize the data: $Display \rightarrow Memory \rightarrow Normalize$

Note:

- performing a division from subsequent traces
- All other data memory operation require the trace to be manually saved to memory

3. The notch bandwidth values are displayed with the marker in the top-left corner of the trace:

• This performs two steps in 1 command, first saving the current trace to memory, then

To save the current trace to memory:

Display \rightarrow Memory \rightarrow "Data \rightarrow Mem"

The trace display can be configured to show either the current data, the saved data from memory, or both:

Display \rightarrow Memory \rightarrow Display Content \rightarrow Data | Mem | Data & Mem | Off

To perform a calculation between the latest data trace and the memory trace, select the relevant option as summarized in the table below:

Display \rightarrow Memory \rightarrow Data Math \rightarrow ...

Data Math Opertaion	Summary
Data / Mem	Latest measurement data divided by memory trace (point by point). Same effect as normalizing data
Data * Mem	Latest measurement data multiplied point by point with memory trace (point by point).
Data – Mem	Difference between measured data and the memory trace (point by point)
Data + Mem	Sum of the measured data and memory trace (point by point)
Off	Turn off memory math calculations (any calculated traces will revert to showing current data only)

8. Measurement Pass / Fail Tests

8.1. Specification Limit Test

The limit test allows a number of frequency bands to be defined with minimum or maximum test specifications per band. The limit lines and a clear failure indicator can be displayed on the trace, as shown in figure 15.

Figure 15: Trace display showing the limit bands to be tested

- 1. Toggle the limit test on and off with Markers / Analysis \rightarrow Analysis \rightarrow Limit Test \rightarrow Limit Test
- test limit, including whether the test is against an upper or lower limit Markers / Analysis \rightarrow Analysis \rightarrow Limit Test \rightarrow Limit Table

Туре	Begin Stimulus	End Stimulus	Begin Response	End Res
1 Upper Limit	2.2 GHz	2.3 GHz	-50 dB	-40 dB
2 Upper Limit	2.5 GHz	2.6 GHz	-30 dB	-50 dB
3				

- button to recall a previous CSV file.
- 4. Click Apply and OK to load the limit table
- 5. Toggle the limit line display on and off Markers / Analysis \rightarrow Analysis \rightarrow Limit Test \rightarrow Display Limit Line
- 6. Toggle the Failure notice on and off (when enabled, a prominent "FAIL" label will be displayed on the trace when the limit test fails) Markers / Analysis \rightarrow Analysis \rightarrow Limit Test \rightarrow Fail Sign

8.2. Ripple Test

The ripple test allows a number of frequency bands to be specified with a maximum ripple value per band. The eVNA can be configured to mark-up the trace display with the measured ripple value, the ripple bands and a clear failure indicator, as shown in figure 16.

2. Open the limit table and specify the begin and end points (stimulus and data value) for each

		_
ponse		
Ca	ncel	
_		

3. The limit table can be saved to a CSV file as a back-up and to allow easy recall for future test sessions, click the "Export To..." button and specify the filename. Use the "Import To..."

Figure 16: Trace display showing the ripple bands, ripple value and test failure notice

To configure the ripple test:

1. Toggle the ripple limit test on and off with

Markers / Analysis \rightarrow Analysis \rightarrow Ripple Limit \rightarrow Ripple Limit Test

2. Open the ripple limit table and specify the begin and end stimulus values for each band to test, along with the maximum ripple value allowed for the band Markers / Analysis \rightarrow Analysis \rightarrow Ripple Limit \rightarrow Ripple Label Table

ect. 6	Ripple Lir	nit Table						×
Rip	ople Lim	it Table						
	Is active	Begin Stimulus	End Stimulus		Maximum Ri	pple		
1		2.36	2.44		0.1			
-								
l	mport	Export to		ОК	Apply		Car	icel

- 3. Check the "Is active" option to enable the test
- 4. The limit table can be saved to a CSV file as a back-up and to allow easy recall for future test sessions, click the "Export To..." button and specify the filename. Use the "Import To..." button to recall a previous CSV file.
- 5. Click Apply and OK to load the ripple limit table

- placed on the trace at the mean value within the band, ± ripple limit value) Markers / Analysis \rightarrow Analysis \rightarrow Ripple Limit \rightarrow Ripple Lines
- 7. Toggle the Failure notice on and off (when enabled, a prominent "FAIL" label will be displayed on the trace when the ripple limit test fails) Markers / Analysis \rightarrow Analysis \rightarrow Ripple Limit \rightarrow Fail Sign
- the marker details
 - Markers / Analysis \rightarrow Analysis \rightarrow Ripple Limit \rightarrow Ripple Band

8.3. Bandwidth Test

The bandwidth test identifies the pass band of the trace and compares to specified min / max limits. The pass / fail result can be displayed on the trace, as shown in figure 17.

To configure the bandwidth test:

- 1. Toggle the bandwidth test on and off with Markers / Analysis \rightarrow Analysis \rightarrow Bandwidth Test \rightarrow BW Test
- 2. Set the threshold (dB) used to determine the bandwidth of the trace Markers / Analysis \rightarrow Analysis \rightarrow Bandwidth Test \rightarrow Threshold

Threshold	3	dB	\sim	\sim	
-----------	---	----	--------	--------	--

Toggle the ripple line display on and off (2 horizontal lines highlighting the stimulus band, If multiple ripple limit bands have been defined, specify which band should be indicated by

3. Set the minimum and maximum stimulus specification limits for the pass / fail test Markers / Analysis \rightarrow Analysis \rightarrow Bandwidth Test \rightarrow Min BW

MHz \checkmark \land \checkmark \checkmark \times Min BW 50

Markers / Analysis \rightarrow Analysis \rightarrow Bandwidth Test \rightarrow Max BW

Max BW	70	MHz	\sim	^	\sim	\checkmark	X
--------	----	-----	--------	---	--------	--------------	---

- 4. Toggle the display of calculated bandwidth on and off Markers / Analysis \rightarrow Analysis \rightarrow Bandwidth Test \rightarrow BW Display
- 5. Toggle the bandwidth trace marker display on and off Markers / Analysis \rightarrow Analysis \rightarrow Bandwidth Test \rightarrow BW Marker
- 6. Toggle the Failure notice on and off (when enabled, a prominent "FAIL" label will be displayed on the trace when the limit test fails) Markers / Analysis \rightarrow Analysis \rightarrow Limit Test \rightarrow Fail Sign

9. Window / Display Configuration

The eVNA includes a number of options to customize the graph display and configuration.

9.1. Display Update

By default, the graph display is constantly updating live with new measurement data. Where fastest speed is critical and the measurement does not need to be viewed live, the display update can be turned off and the trace will pause at its last value. Measurement operations continue in the background and the display update can be re-enabled again when needed.

To disable or enable display update, toggle the Update option: Response \rightarrow Display \rightarrow Update

eVNA-63+ 3.0.5 simulator Channel / Trace Response Invert Color: Normal Update: Yes

SCPI DISPlay: ENABle <0|1> **DISPlay: UPDate**

9.2. Main Menu Bar

The main menu bar can at the top of the display can be toggled on and off as shown in figure 16: Response \rightarrow Display \rightarrow Display Menu Bar

To adjust the menu bar font size: Response \rightarrow Display \rightarrow Bar Font

9.3. Channel Labels

The channel title label can be displayed and edited separately for each active channel visible on the display. Figure 17 shows the how the label appears above the top left corner of the channel's trace display.

eVNA-63+ 3.	0.5 simulator		
Channel / Trace	Response	Simulus	System
Edit Title Label: No	ew Measurem	nent Label	Display
New Measurem	ent Label		
Tr1 S21 Log	arithmic 10	/► 0 D	

Figure 17: Channel 1 with title label displayed as "New Measurement Label"

eVNA-63+ 3.0.5 simulator
Display Menu Bar: No Bar Font: 14
Tr1 S21 Logarithmic 10 /> 0 D
0

Figure 16: Menu bar visible (left) and hidden (right)

To show / hide the label:

Response \rightarrow Display \rightarrow Labels \rightarrow Display Title Label

To edit the text for the channel label, open the title input in the settings bar and overwrite the label as needed:

Response \rightarrow Display \rightarrow Labels \rightarrow Edit Title Label

SCPI DISPlay: WINDow: TITLe: DATA <title_text> DISPlay: WINDow: TITLe [:STATe] <0|1>

// Set the label text // Hide show the label

9.4. Axis Labels

The x-axis and y-axis labels can be turned on and off on the trace display.

To toggle the graticule label (y-axis):

Response \rightarrow Display \rightarrow Labels \rightarrow Graticule Label

To toggle the x-axis frequency label:

Response \rightarrow Display \rightarrow Labels \rightarrow Display Frequency

SCPI

DISPlay: WINDow: LABel <0|1> DISPlay: ANNotation: FREQuency [:STATe] <0|1>

9.5. Invert Colors

The default eVNA trace color scheme with black background should be familiar to users of legacy VNA instruments. The colour scheme can also be inverted to show the traces on a white background, which can be more convenient when printing screenshots. Figure 18 shows the comparison between the 2 color schemes.

1. To change the color scheme:

Response \rightarrow Display \rightarrow Update

2. Toggle between Normal and Invert in the Settings bar: Markers / Analysis \rightarrow Analysis \rightarrow Bandwidth Test \rightarrow Threshold

Invert Color Normal 🗸

Figure 18: Side by side comparison of normal (left) and inverted (right) color schemes

SCPI DISPlay: IMAGe <NORMal | INVert>

10 Save & Recall Data

10.1. Instrument Settings, Calibration State & Measurement Data

Instrument settings, calibration state and measurement data can all be saved to a file on the host PC. All data associated with a measurement is exported, including calibration data, match networks, measurement data, parameters, setup, and graphs, with zoom and marker information. Any number of configurations can be saved to the file system in this way and then recalled to the eVNA in an instant, to save time setting up regular measurement profiles time and again.

Note:

- All data saved in this process is specific to the instrument and calibration that generated it. It cannot be recalled to another VNA, including to another eVNA-63+ instrument.
- longer be valid.

Instrument and calibration states may change over time so recalled data may no

Content	File Type	Descirption
State	.state	Full instrument settings including channel, trace and formatting
State + Calibration	.cstate	Full instrument settings + the current calibration data / configuration
State + Data	.dstate	Full instrument settings + the current measurement data
State + Calibration + Data	.cdstate	Full instrument settings + the current calibration data / configuration + the current measurement data

Table 7: Summary of different data save options and the respective file types

10.1.1. Saving State Data

To save the instrument state data:

1. Launch the save file dialog box

System \rightarrow Save / Recall \rightarrow Save

2. Enter a filename and set the file type according to the table below, to specify the content of the configuration file.

Markers / Analysis \rightarrow Analysis \rightarrow Bandwidth Test \rightarrow Threshold

File <u>n</u> ame:	
Save as type:	State + calibration (*.cstate)
	State + calibration (*.cstate)
✓ All Channels and Traces	State (*.state) State + data (*.dstate)
	State + calibration + data (*.cdstate)

3. The "All Channels and Traces" option is checked by default to save full data to the file. This option can be unchecked if data is required only for the active channel and trace.

SCPI MMEMory: STORe: STYPe <STATe | CState | DSTate | CDSTate> MMEMory: STORe: SALL <1|0> MMEMory: STORe [:STATe] <path/filename.extension>

10.1.2. Recalling State Data

Specify the state file to recall with one of the 4 file types above. The GUI will load the configuration and update the display as required based on the file type.

System \rightarrow Save / Recall \rightarrow Recall

SCPI MMEMory: LOAD [:STATe] <path/filename.extension>

10.2. S-Parameter Data

The eVNA can export s-parameter measurement data in Touchstone format as an s1p or s2p file. The full measurement data is included, independent of the current trace settings. To save

the snp data:

- **1**. Specify the required data format for snp file from the following options:
 - a. dB & phase angle
 - b. Magnitude & phase angle
 - c. Real & Imaginary impedance

System \rightarrow Save / Recall \rightarrow Save SnP \rightarrow SnP Format

ıt	Real + Imaginary	\sim	× 🗖 🗆 🗧 🗧	Save SnP
	Auto]		
S1	dB		D	SnP Format
0	Magnitude + Phase	е		
	Real + Imaginary			

- 2. Then save the data for the required ports:
 - a. 1-port s-parameters (S11) for port 1
 - System \rightarrow Save / Recall \rightarrow Save SnP \rightarrow S1P \rightarrow 1
 - b. 1-port s-parameters (S11) for port 2
 - System \rightarrow Save / Recall \rightarrow Save SnP \rightarrow S1P \rightarrow 1
 - c. Full 2-port s-parameters (S11, S21, S12, S22)
 - System \rightarrow Save / Recall \rightarrow Save SnP \rightarrow S2P
- 3. You will be prompted to specify a path and filename to create the s1p / s2p file on the host PC

SCPI

MMEMory: STORe:SNP:FORMat <MA|DB|RI> MMEMory: STORe:SNP: NPORTS <1|2> MMEMory: STORe:SNP: PORTS <1|1,2> MMEMory: STORe:SNP: TYPE:S1P <1|2> | MMEMory:STORe:SNP:TYPE:S2P <1,2> MMEMory: STORe:SNP [:DATA] <path/filename.extension>

10.3. Trace Screenshot

The current trace display can be saved as an image file in .png or .bmp format. The image will be exactly as the trace is shown on the GUI, including all visible notations and markers. Where the GUI has been configured to show multiple separate traces, only the active trace is included in the screenshot. To save screenshots of additional traces, click each one in turn to set it as the active trace before saving.

System \rightarrow Save / Recall \rightarrow Save Screenshot

10.4. Trace CSV Data

Data from the current trace can be exported as a CSV file. The data columns will reflect the formatting specified in the trace display. Where the GUI has been configured to show multiple separate traces, only the active trace is included in the data.

System \rightarrow Save / Recall \rightarrow Save Trace Data

11. Simulation Mode

Simulation mode is a powerful tool within the eVNA Studio software which enables the user to explore a fully operational VNA with no up-front cost, hardware, or even a DUT (device under test). Connect to an internal simulator in the same way as you would connect to the real hardware and then explore the VNA's capability around a built-in band pass filter measurement. The software also accepts imported Touchstone s-parameter files to allow simulated vector network analysis of a wide range of RF components.

- **1**. Explore the full eVNA capability prior to purchase
- 2. Educate yourself on proper VNA configuration and usage
- 3. Design and practice measurement sequences in advance of DUT availability
- 4. Visualize and interact with standard Touchstone s-parameter data files to properly analyze new RF component choices

Mini-Circuits has 1000s of s-parameter files available for download from our website for our full range of surface mount components.

11.1. Starting Simulation Mode

The eVNA can export s-parameter measurement data in Touchstone format as an s1p or s2p file. The full measurement data is included, independent of the current trace settings. To save

the snp data:

- 1. Launch the GUI
- with a list of available instruments

click Connect

Number Software Version Connection Activation Availability
or 3.0.0.722c3c3e Disconnected Activated Available
or 3.0.0.722c3c3e Disconnected Activated Avail

4. The software will configure itself as if a real eVNA-63+ instrument is connected, with a measurement underway on a band-pass filter, centered at 2.4 GHz

2. From the top menu, select System \rightarrow More \rightarrow Connections to open the Connection Manager

3. If no eVNA hardware is detected then simulator will be the only option shown, select it and

and the second strategy and the second strategy and	annel / Trace Markers	/ Analysis Help							🖵 Mini-	Circui
ference Clock Source: Internal System	Correction: Yes Log Seve	rity: Normal			5 2 1	More	Stin	nulus	Channe	I / Trace
Tr1 S11 Logarithmic 10 /> 0 D						Bias Tee	Start	Stop	Cha	innel
0						Reference Clock Source	Center	Span	Tn	ace
-10						Beep	Sweep Setup	Trigger	Win	dow
-20 -30		V				System Correction		oonse	Markers	Analysi
-40						Connections	Measure	Format	Setup	Search
-60						Simulator	Scale	Display	Function	Analys
-70						Log Severity	Avg	Cal		
-80						Save Logs	Sys	stem		
-100							Save / Recall	Preset		
110							More	Language		
-120										
-140										
-150 1		2 Frequen	3 cy (GHz)	4	5 6					

5. The S11 trace is displayed initially but the full range of VNA capabilities can be explored based on this simulation, including different measurements, traces, markers and calculations

11.2. Simulation of S-Parameter s2p Files

- 1. Once simulation mode is running you can use the eVNA Studio software as a tool to visualize standard Touchstone s-parameter files for other components
- 2. The example below uses https://www.minicircuits.com/pages/s-params/XBF-282+_S2P.zip to simulate Mini-Circuits' XBF-282+ reflectionless band pass filter
- 3. In simulator mode, select System \rightarrow More \rightarrow Simulator \rightarrow Load SnP from the menu
- 4. The trace for S11 will appear initially

5. To add additional traces, select Channel / Trace \rightarrow Trace \rightarrow Num Traces and enter the number of traces required in the Settings Bar

 \vee \times \bowtie \neg \neg \leftarrow Num Traces 2

6. Initially all traces will appear on a single graph, with a title for each in the top left-hand corner, click on the relevant title to modify a particular trace

Olimandum	Deserves	Ounter	Observal / Terror	Martines / Ameliate	11.
Sumulus	Response	System	Channel / Hace	Markers / Analysis	He
Active: 2	Num Traces: 2				
Tr1_01	-Logarithmic	10 / 0	D		
	1 Logar thmic	10.0	D		

- 7. To show the S21 s-parameter response on the additional trace, select Response \rightarrow Measure \rightarrow S21
- 8. To add a marker, select Markers \rightarrow Setup \rightarrow Marker 1 and then specify the frequency (repeat for additional markers as required)

			Mini-	Circuit
tor	Stin	nulus	Channe	I / Trace
P	Start	Stop	Cha	nnel
or	Center	Span	Тп	109
	Sweep Setup	Trigger	Win	dow
	Response		Markers /	Analysis
	Measure	Format	Setup	Search
	Scale	Display	Function	Analysis
	Avg	Cal		
	Sys	stem		
	Save / Recall	Preset		
	More	Language		

р			
	Num Trace	s 2	\times \times \frown \frown \frown \leftarrow
		_	

9. All traces are overlayed on the same graph initially

10. To separate traces on to separate graph displays, select Channel / Trace \rightarrow Trace \rightarrow Trace Layout, then scroll through the icons in the Sub Panel to select an appropriate layout 11. To show 2 graphs side by side select the icon below

	-		Ľ
			L
			L
			L

12. Select Response \rightarrow Scale \rightarrow Auto Scale All to adjust both graphs to an appropriate scale

D - Calibrate

1 VNA Frror Sources

VNAs are precision test instruments, based on relative measurements made between the internal source and receiver. To achieve the specified accuracy, the system must be calibrated carefully to correct to minimize the sources of error and remove the effects of all accessories (cables, adapters and test fixtures) in the VNA to DUT path.

1.1. Types of Error

VNA measurement error sources typically fall into 3 distinct categories, random, drift and systematic.

1.1.1 Random Errors

Random errors are non-repeatable errors in a VNA measurement which can't be eliminated by calibration. Care should be taken to minimize random sources of error in the VNA operating environment by employing best measurement practices. This includes:

- Stable temperature and humidity
- Use of high-quality components and accessories
- Properly torque all RF connections
- Replace worn or damaged connectors, cables, etc.

1.1.2 Drift Errors

Drift errors begin to appear in any VNA measurement from the time it is calibrated. One of the main sources of drift error is temperature variation since the initial calibration. To minimize the effect of these errors it is important to allow the instrument sufficient time to warm up before calibrating and then maintain a consistent room temperature (25oC ±5oC is recommended). The eVNA-63+ has an operating temperature range specification of 0oC to +55oC but using the instrument at the extremes of this range is likely to degrade measurement accuracy.

Since these errors increase over time from the last calibration, they can be eliminated by performing a new calibration.

Minimize sources of electromagnetic noise (e.g., transmitters, motors, high power devices)

1.1.3 Systematic Errors

Systematic errors are errors associated with a VNA measurement system itself. These are typically consistent for a given VNA instrument and so can be compensated for by performing a user calibration.

1.2. Correcting for VNA Error Sources

The purpose of user calibration is to minimize the systematic measurement errors associated with a VNA test setup. The calibration process requires taking measurements of a known set of reference standards to produce a set of error correction factors. These error correction factors are stored in the VNA and subtracted from the DUT measurements. The process has a dual effect on the measurement data:

- 1. Remove the effect of any cables and accessories in the test path to set the measurement reference place as close as possible to the DUT input / output ports
- 2. Minimize the systematic and drift errors typical of a VNA test setup

The eVNA-63+ calibration process is based on known Short, Open, Load, and Thru (SOLT) standards, which must be characterized across the full frequency span required for the DUT measurements.

It is important to match the calibration kit to the connector type being used for the measurement.

1.3. Isolation Considerations

VNA port-to-port crosstalk isolation is a limiting factor when performing high dynamic range measurements at high frequencies. Crosstalk is the leakage from one port to another when no device is present at either port, and can be corrected for as part of the calibration process. This correction is especially useful for a DUT with high loss at some point in the measurement band, including SAW filters with high stop band rejection, or switches in the open position. It should be performed when the port-to-port isolation requirement is >100 dB across the frequency span.

The isolation calibration will contribute noise to the measurement close to the VNA noise floor. Setting a low IF bandwidth can help to minimize the noise contribution and improve measurement accuracy.

A full 2 port (12 error term) calibration is recommended for measurement of a DUT with high isolation or poor return losses. The Load standard is typically used during the isolation calibration but for a highly reactive DUT, such as a filter response in the cut-off region, an open or short provides better results.

2.Calibration Theory

2.1. Calibration Process Flow

Any connectors, cables, or adapters connected to a VNA as part of the measurement process should be included in the calibration so that the reference plane of the measurement can be set at the DUT connectors. The general flow diagram for the process to perform a calibration is shown in Figure 19. The loop to connect the next standard and run the calibration sweep is repeated for each calibration step required in the software, which varies depending on the type of calibration selected (for example Short, Open, Load & Thru on both ports 1 and 2). At each stage it is crucial to ensure good connections are made. The software indicates which standards and tests are needed at each stage.

Figure 19: Calibration process flow diagram

2.2. How Often to Calibrate

The frequency of user calibrations depends on the specifics of your test setup, including the level of accuracy required and the likelihood of changes in the test setup or environmental conditions. As a general rule of thumb, it is recommended to re-calibrate the eVNA for any of the following reasons:

- **1. Per day or session** VNA systems should be re-calibrated at the start of a new day or test session
- 2. After changes in external connections VNA calibrations apply to the specific set of external cables and accessories (excluding the DUT) so the system should be re-calibrated after changing any external cables, adapters or accessories up to the DUT interface, even when swapping accessories like for like. Changes in cable flexure will also affect system performance, so for best accuracy you should consider re-calibrating if the cables have been subject to significant movement.
- 3. After changes in environmental conditions All RF components / systems are affected by their environment so re-calibration may be required if there has been a significant change in operating temperature or humidity since the last calibration.
- Between VNA instruments Calibrations apply to the specific VNA instrument for which they were calculated so a new calibration will be required when setting up on a new VNA.

2.3. Reference Plane

The reference plane for a VNA measurement should be set as close as possible to the DUT connectors, after any cable and adapter accessories connected in the test path. This is achieved by keeping the accessories in the path during the calibration process, so any calibration standards required are connected to those accessories at the same point and with the same connector gender as the DUT. Careful consideration must be given to the connector types and genders of the DUT to ensure the correct calibration standards are available.

3. eVNA Calibration Standards

3.1. SOLT Calibration

SOLT (Short, Open, Load & Thru) calibrations are ideal for measurement of connectorized devices. They involve a set of well-defined standards with an appropriate connector type for the DUT. The standards are typically accompanied by a set of definitions which need to be incorporated into the software. Mini-Circuits' KSOLT calibration kits are pre-loaded into the software to allow easy selection by the user. Cal kit standards from other suppliers can be uploaded as summarized later in this section.

Once the cal kit is defined, the eVNA Studio software walks the user through the process to connect each standard and characterize across the sweep frequency range. The software compares the measured response against the pre-defined characteristics and computes a correction factor to be applied to all future measurements.

The cal kit for any set of measurements typically includes:

- separate components
- Thru standards

Depending on the type of measurement to be carried out on the DUT, it may only be necessary to use a sub-set of the above SOLT standards. For example, characterization of a 1-port device would only require short, open and load standards with a single connector gender, to connect to a single port on the eVNA.

Figure 20: Reference plane location for VNA measurements with 2 test cables in pat

Reference Plane

SOL (short, open and 50 Ω load) of the same connector type as the DUT, these are typically supplied as 1 component with 3 separate connectors for the individual standards, or as 3

 Note: SOL standards with both male and female connectors are required for an "insertable" DUT, with male input and female output connectors (or vice versa)

• Female to female, male to male, and female to male standards with the same electrical length (commonly referred to as "phase equal" or "swap equal" adapters) are required for measurements of a DUT with the same input and output connector gender

3.2. Insertable & Non-Insertable Devices

Insertable devices are those with input and output connectors of opposite genders (male to female or female to male) whereas non-insertable devices have input and output connectors of the same gender. Typical examples of these are presented in figure 21.

Figure 21: Examples of non-insertable (left) and insertable (right) devices

Insertable devices are simpler to connect when a thru calibration is required as the two VNA cables can be connected together directly. For a non-insertable device, the two VNA cables will have the same outward connector gender so cannot be connected together directly. In this event, a set of phase-equal (or swap-equal) Thru standards is required for calibration and measurement, as shown in figure 22.

Figure 22: Set of phase-equal Thru standards—Male to Male is required for the above example

The additional steps for calibration of a non-insertable device are:

1. Select either the male to male or female to female Thru standard as required to mate to the two VNA cables

2. Use the Thru standard to interconnect the two VNA cables for the thru calibration measurement

for all other calibration and DUT measurements

4. This ensures the phase length of the Thru standard is compensated for at all stages of the measurement

3.2.1. 12-Term Error Model

There are 12 measurement error terms that can be calibrated out using the SOLT (Short, Open, Load, Thru) calibration model. All 12 terms need to be characterized for a full 2-port calibration but only a subset is required for other calibration types, such as a response, enhanced response or 1-port calibration. The complete set of 12 error terms comprises the 6 terms below in both the forward and reverse directions:

- 1. Directivity
- 2. Port 1 match
- 3. Port 2 match
- 4. Transmission tracking
- 5. Reflection tracking
- 6. Leakage

Figure 24: Male to male Thru, used to interconnect the two VNA test cables

3. Connect the phase-equal male to female Thru standard on one of the eVNA test cables

Figure 25: Male to female Thru connected on test cable 2-The same connector genders are now presented to the DUT

The correction factors are calculated during the calibration process and are subsequently applied to the DUT measurements. The calibration standards used to determine these error correction factors will be dictated by the type of calibration needed and whether the DUT is an insertable (with connectors of opposite genders) or non-insertable (with connectors of the same gender) device.

3.3. Automatic / Electronic Calibration (eMCal)

Mini-Circuits is developing an automatic, electronic calibration module (eMCal-63+) which will be available at the beginning of 2022. This can be used to replace the multiple mechanical SOLT standards with a single 2-port device which is connected between the 2 ports of eVNA-63+ at the measurement reference plane (after any cables and accessories in the RF path). The device is controlled directly from the eVNA Studio software, interfacing with the eMCal via USB. Internally, the eMCal switches through a set of well-defined impedances to calibrate the instrument.

- Only 2 connections required, eliminating common sources of user error
- Fast and repeatable process, automated through the software
- Internally temperature stabilized
- Available in a range of connector types
- Calibration constants stored internally and loaded automatically
- Please contact testsolutions@minicircuits.com for more information and to be kept informed on availability.

3.4. Selecting a Cal Kit

eVNA Studio is preset with two Mini-Circuits mechanical calibration kits (SMA and N-type) plus an ideal calibration response. In addition, 17 slots are available for new calibration kits to be defined by the user.

Select Response \rightarrow Cal \rightarrow Cal Kit to see the list of defined cal kit options shown in Figure 26.

Figure 26: Cal kit options defined in the eVNA Studio GU

3.4.1. Mini-Circuits' KSOLT-63-x Cal Kits

Mini-Circuits' KSOLT-63 mechanical calibration kits to cover all DUT measurement requirements with SMA and N-type connections. These precision cal kits are typically available from stock, with all parameters and definitions preloaded in the software. The available cal kits are:

- KSOLT-63-S+
- KSOLT-63-N+

Each kit contains the following items with the relevant connector type:

- Short / Open / Load standards (female)
- Short / Open / Load standards (male)
- Through standard (female to male)
- Through standard (male to male)
- Through standard (female to female)
- Torque wrench

Complete set of calibration standards and torgue wrench with SMA connectors

Complete set of calibration standards and torgue wrench with N-type connectors

Figure 27: SMA KSOLT-63-S+ kit, including SOL (f & m) and Thru (f<>f, f<>m, m<>m) standards

Figure 28: N-type KSOLT-63-N+ kit, including SOL (f & m) and Thru (f<>f, f<>m, m<>m) standards

3.4.2. Ideal Cal Kit

The "Ideal" option in the Cal Kit menu loads ideal 50Ω parameters for the calibration. This option can be used for basic measurements where only an indication of performance is required, with no guarantee on accuracy. The ideal option is suitable for a response calibration where no calibration kit is required.

3.5. Adding / Modifying Cal Kits

Existing calibration kit definitions can be modified and new definitions can be created through the Cal Kit menu by following the general steps summarised in figure 29. User defined cal kits are automatically saved and will persist on future use of the eVNA software.

Figure 29: General steps to add or modify a cal kit

3.5.1. Select and Name a Cal Kit

The eVNA comes pre-populated with 2 Mini-Circuits calibration kits, an ideal response kit and 17 blank slots names User 1 to User 17. It is recommended to select a blank User slot for a new cal kit definition.

- 1. Select the cal kit to modify
 - $\mathsf{Response} \rightarrow \mathsf{Cal} \rightarrow \mathsf{Cal} \: \mathsf{Kit} \rightarrow \dots$
- 2. Set the name / label for the cal kit Response \rightarrow Cal \rightarrow Modify Cal Kit \rightarrow Label Kit \rightarrow ...

SCPI

SENSe: CORRection: COLLect: CKIT <number> SENSe: CORRection: COLLect: CKIT: LABel <name>

3.5.2. Define Cal Kit Standards

The calibration coefficients for each standard can be defined through two methods. One method is model-based, using an nth order polynomial equation derived from a set of parameters entered by the user. The second method is data-based, where the data required to characterize the standard is imported from a Touchstone s1p file. The manufacturer of the cal kit should be able to provide either the parameters to be entered manually, or the s1p data file to define the standard.

By default, the eVNA contains 21 blank slots named "Standard 0" to "Standard 20".

Note:

1. Select the standard to edit

Response \rightarrow Cal \rightarrow Modify Cal Kit \rightarrow Define Standards \rightarrow ...

• If two standards have the same model coefficients (for example the male and female broadband loads), it is acceptable to define a single standard to be used in both cases.

••• 1: STANDARD0			×
Identification Standard ID 1 Label STAND Type Oper			
File File name			X
Frequency Ran	ge	Media	
Min 0	Hz 🗸	Type Coaxial	\sim
Max 100000	000000(Hz 🗸		
Common Chara	acteristics		
Delay 0	ps 🗸	Z0 50	Ohm
Loss 0	G Ohm/sec		
Open Characte	ristics		
C0 0	F(e-15)	C2 0	F(e-36)/Hz^2
C1 0	F(e-27)/Hz	C3 0	F(e-45)/Hz^3
Clea	аг ОК	Cancel	Apply

- 2. Specify the label and type for the individual cal kit standard
- 3. If the manufacturer has made available a Touchstone s1p data file for the standard, it can be imported by clicking the ellipsis button next to the filename
- 4. If no Touchstone s1p file is available, the coefficients can be entered manually, exactly as provided by the manufacturer.
- 5. Repeat the above steps for each cal kit standard

SCPI

SENSe: CORRection: COLLect: CKIT: STAN <standard_number> SENSe: CORRection: COLLect: CKIT: STAN: ...

3.5.3. Define Subclasses

After defining cal kit standards, it is important to specify the subclasses / groups to be used in each calibration scenario. A subclass is used to specify which set of standards are used for a particular DUT connection type and gender configuration. For example, a 1-port DUT with male input connector requires a different set of SOL standards from a 1-port DUT with female input connector.

By convention, the subclass names should reference the connector types and genders of the DUT, rather than the connectors of the cable connecting to the DUT. For example, a subclass named "N-F to N-M" would be appropriate for a subclass of standards intended for measurement of a 2-port DUT with N-type female input and N-type male output connectors. By default, 8 subclass slots are available per cal kit (each named "Default").

To specify the subclass:

1. Select the subclass slot

Response \rightarrow Cal \rightarrow Modify Cal Kit \rightarrow Specify Subclass \rightarrow ...

2. Label the subclass

🚾 Specify	Subclass				×
Cal Kit :	85032F				
Channel N	Number : 1				
Subclass	# 1 N-F TO N-M	/ (FL)			
Port 1			Port 2		
Open	OPEN -F-	\sim	Open	OPEN -M-	\sim
Short	SHORT -F-	\sim	Short	SHORT -M-	\sim
Load	LOAD	\sim	Load	LOAD	\sim
Thru 2 1	FLUSH THRU	\sim	Thru 1 2	FLUSH THRU	\sim
	Apply)	Ci	ancel	

and Thru on each of ports 1 and 2, then click Apply to save

SCPI

SENSe: CORRection: COLLect: CKIT: ORDer [:SELect] <subclass_number> SENSe: CORRection: COLLect: CKIT: ORDer:..

3.5.4. Export / Import of XML Cal Kit Definitions

Cal kit definitions can be exported to an XML file for easy recall in the event of accidental user changes, and to speed up transferring cal kits between different instances of the eVNA Studio software.

To export the active cal kit:

Response \rightarrow Cal \rightarrow Modify Cal Kit \rightarrow Export \rightarrow ... To import a cal kit:

- 1. Specify the path and file name of the XML file Response \rightarrow Cal \rightarrow Modify Cal Kit \rightarrow Import \rightarrow ...
- correct, by referring to the sections above

3. Specify which of the previously defined standards will be used for the Open, Short, Load

2. It is recommended to review the name, standards and subclasses to confirm the details are

3.6. Enabling Error Correction

Error correction must be enabled in order to apply the specified calibration to the measured data. Conversely, error correction can be disabled to view raw uncorrected measurement data. Error correction is automatically enabled on completion of a user calibration. To toggle error correction on / off:

Response \rightarrow Cal \rightarrow Correction

The settings bar will show the latest error correction status, in the top-left corner of the GUI, just below the main menu, as shown in figure 32.

eVNA-63+ 3.0.5 simulator

Channel / Trace Response

Correction: Yes Cal kit: KSOLT-63-S+

Figure 32: Current error correction status indicated in the settings bar

SCPI SENSe: CORRection: STATe <0|1>

3.7. Clearing Calibration Data

To delete stored calibration data and turn off error correction:

Response \rightarrow Cal \rightarrow Clear \rightarrow OK

Note:

This does not affect stored calibration standards and subclasses

SCPI SENSe: CORRection: CLEar

4. Calibration Methods

There are a number of calibration methods possible, the choice of which is dictated by the goals of the measurement session including the required accuracy and the type of device to be measured. Figure 33 presents a flow chart of questions which can be asked to determine which calibration process is best for a given measurement requirement. Table x summarizes the accuracy, errors and merits of the processes available.

Calibration Type	Standards Required	Effort / Accuracy	Errors Removed	Typical Usage
Uncorrected	N/A	No effort / Not accurate	None	Course indication of performance
Response (Transmission)	т	Low effort / Low accuracy	Transmission tracking	First pass evaluation with frequency response of test setup removed (S12 & S21)
Response (Reflection)	SO	Low effort / Low accuracy	Reflection tracking	First pass evaluation with frequency response of test setup removed (S11 & S22)
EnhancedResponse	SOLT	Medium effort / Medium accuracy	Directivity, source match, transmission & reflection tracking	2-port, 1-path measurements (S11 & S12 or S21 & S22)
1-Port SOL	SOL	Medium effort / High accuracy	Directivity, source match & reflection tracking	Reflection measurements (S11 or S22)
2-Port SOLT	SOLT	High effort / High accuracy	Directivity, source & load match, reflection & trans- mission tracking, isolation	Best accuracy; full 2-port / 2-path s-parameters (S11, S12, S21 & S22)
Automatic (eMCal)	eMCal	Low effort / High accuracy	Directivity, source & load match, reflection & trans- mission tracking, isolation	Best accuracy, fastest setup, minimal user error risk; full 2-port / 2-path s-parameters (S11, S12, S21 & S22)

Figure 33: Flow chart for choice of calibration process

Table 9: Comparison of calibration methods

4.1. Response Calibration

The response calibration removes only the transmission or reflection tracking error terms so cannot provide a high degree of measurement accuracy. This can be performed using the Short, Open and Thru from an SOLT cal kit, or with no cal kit standard at all since accuracy of the measured data will already be limited. The response cal can be used to obtain a first pass indication of the DUT performance, with the frequency response of the fixture / cable loss removed.

4.1.1. Thru Response (Transmission Tracking)

The Thru response process is a 2-port calibration using the Thru standard to eliminate the transmission tracking error, which effectively removes the cable loss from the measurement. An isolation calibration can optionally be performed to eliminate isolation errors.removed.

Figure 34: Thru connection for response thru calibration

Caution:

- Ensure the bias-tee outputs are disabled to prevent damage to calibration standards
- 1. Select a calibration kit

Response \rightarrow Cal \rightarrow Cal Kit \rightarrow ...

2. Specify the Thru calibration type and the source / receiver ports for the measurement:

a. Port 2 as source, port 1 as response:

Response \rightarrow Cal \rightarrow Calibrate \rightarrow Response \rightarrow Response Thru \rightarrow 1-2 (S12)

b. Port 1 as source, port 2 as response

Response \rightarrow Cal \rightarrow Calibrate \rightarrow Response \rightarrow Response Thru \rightarrow 2-1 (S21)

🐖 1-2 (S12)			;
Subclass 1	- SMA-F to SM	/A-F 🗸	
1-2 (S12)			
Thru	×	Isolation	
Appl		Overwrite	Close

- 4. Select the correct subclass based on the input / output connectors of the DUT
- will appear next to Thru when complete

Thru

on both the port 1 and port 2 cables, as shown in figure 35

3. Connect the Thru to the port 1 and 2 test cables using a torque wrench, as shown in figure 35 5. Click the Thru button in the calibration window to run the calibration sweep, a tick symbol

6. If an isolation calibration is to also to be run, connect a Load standard using a torque wrench

Figure 35: Load connections for response isolation calibration

- 7. Click the Isolation button on the calibration window to run the sweep, a tick will appear next to the button when complete
- 8. Click Apply and then Close to complete the process and apply the calibration coefficients to the measured data
- 9. Save the instrument and calibration state so it can be recalled later if needed (enter a filename and select the .cstate file type) System \rightarrow Save / Recall \rightarrow Save

After the full calibration has been completed, it is possible to repeat the calibration measurement for an individual standard if needed. Follow the steps above but measure only the standard which needs to be updated, then click the Overwrite button to complete, instead of Apply.

SCPI

SYSTem: BIAStee 0 SENSe: CORRection: COLLect: CKIT <number> SENSe: CORRection: COEFficient: METHod [:RESPonse]: THRU <1,2|2,1> SENSe: CORRection: COLLect [:ACQuire]: THRU <1,2|2,1> SENSe: CORRection: COLLect [:ACQuire]: ISOLation <1,2|2,1> SENSe: CORRection: COEFficient: SAVE

4.1.2. Open / Short Response (Reflection Tracking)

The Open / Short response process is a 1-port calibration (carried out on either port) using either the Open or Short standards to eliminate the reflection tracking error.

An isolation calibration can optionally be performed to eliminate isolation errors.

Figure 36: Open connection for response reflection calibration

To perform the Open / Short response calibration:

Caution:

- 1. Select a calibration kit

Response \rightarrow Cal \rightarrow Cal Kit \rightarrow ...

2. Specify the Open or Short calibration type and the port for the measurement Response \rightarrow Cal \rightarrow Calibrate \rightarrow Response \rightarrow Open | Short \rightarrow Port 1 | Port 2

ee Port 1		×
Subclass 1 - SMA-F to SMA-	FV	
Port 1		
Open ×	Load	
Apply	Overwrite	Close

Ensure the bias-tee outputs are disabled to prevent damage to calibration standards

eVNA-63+ USER GUIDE - D - CALIBRATE | 100

- 3. Connect the Open or Short on the cable from the specified port using a torque wrench, as shown in figure 36
- 4. Select the correct subclass based on the input / output connectors of the DUT
- 5. Click the Open button in the calibration window to run the calibration sweep, a tick symbol will appear next to Open when complete

Open

6. If an isolation calibration is to also to be run, connect a Load standard on both the port 1 and port 2 cables using a torque wrench, as shown in figure 37

Figure 37: Load connection for response isolation calibration

- 7. Click the Load button on the calibration window to run the sweep, a tick will appear next to the button when complete
- 8. Click Apply and then Close to complete the process and apply the calibration coefficients to the measured data
- 9. Save the instrument and calibration state so it can be recalled later if needed (enter a filename and select the .cstate file type)

System \rightarrow Save / Recall \rightarrow Save

After the full calibration has been completed, it is possible to repeat the calibration measurement for an individual standard if needed. Follow the steps above but measure only the standard which needs to be updated, then click the Overwrite button to complete, instead of Apply.

SCPI

SYSTem: BIAStee 0 SENSe: CORRection: COLLect:CKIT <number> SENSe: CORRection: COEFficient: METHod [:RESPonse]: OPEN <1|2> SENSe: CORRection: COEFficient: METHod [:RESPonse]: SHORt <1/2> SENSe: CORRection: COLLect [:ACQuire]: OPEN <1|2> | SENSe: CORRection: COLLect [:ACQuire]: SHORt <1|2> SENSe: CORRection: COEFficient: SAVE

4.2. Enhanced Response Calibration

The enhanced response process is a 2-port, 1-path calibration using all the SOLT standards. This calibration eliminates the directivity, source match, reflection tracking, transmission tracking and crosstalk errors.

An isolation calibration can optionally be performed to eliminate isolation errors.

Figure 38: Open / Short / Load connections for enhanced response calibration on port 1

Figure 39: Thru connection for enhanced response calibration

Figure 40: Load connections for enhanced response isolation calibration

Caution:

• Ensure the bias-tee outputs are disabled to prevent damage to calibration standards

1. Select a calibration kit

Response \rightarrow Cal \rightarrow Cal Kit \rightarrow ...

- 2. Specify the Open or Short calibration type and the port for the measurement:
 - a. Port 2 as source, port 1 as response

 - b. Port 1 as source, port 2 as response
 - Response \rightarrow Cal \rightarrow Calibrate \rightarrow Enhanced Response \rightarrow 2-1 (S21)

•••• 1-2 (S12)		×
Subclass 1 - Default	×	
1-2 (S12)		
Open	Short	Load
Thru	Isolation	
Apply	Overwrite	Close

- 3. Connect the Open standard on the source port cable as shown in figure 38, using a torque wrench
 - Response \rightarrow Cal \rightarrow Cal Kit \rightarrow ...
- symbol will appear next to Open when complete

Open

- 5. Repeat for the Short and Load standards
- shown in figure 39
- will appear next to Thru when complete
- and port 2 cables using a torque wrench, as shown in figure 40

```
Response \rightarrow Cal \rightarrow Calibrate \rightarrow Enhanced Response \rightarrow 1-2 (S12)
```

4. Click the Open button in the calibration window to run the calibration sweep, a tick

6. Connect the Thru between the port 1 and port 2 test cables using a torque wrench, as

7. Click the Thru button in the calibration window to run the calibration sweep, a tick symbol

8. If an isolation calibration is to also to be run, connect a Load standard on both the port 1

- 9. Click the Isolation button on the calibration window to run the sweep, a tick will appear next to the button when complete
- 10. Click Apply and the Close to complete the process and apply the calibration coefficients to the measured data
- 11. Save the instrument and calibration state so it can be recalled later if needed (enter a filename and select the .cstate file type) System \rightarrow Save / Recall \rightarrow Save

After the full calibration has been completed, it is possible to repeat the calibration measurement for an individual standard if needed. Follow the steps above but measure only the standard which needs to be updated, then click the Overwrite button to complete, instead of Apply.

SCPI

:SYSTem: BIAStee 0 SENSe: CORRection: COLLect:CKIT <number> SENSe: CORRection: COEFficient: METHod: ERESponse <1,2|2,1> SENSe: CORRection: COLLect [:ACQuire]: OPEN <1|2> SENSe: CORRection: COLLect [:ACQuire]: SHORt <1|2> SENSe:CORRection: COLLect [:ACQuire]: LOAD <1|2> SENSe: CORRection: COLLect [:ACQuire]: THRU <1,2|2,1> SENSe: CORRection: COLLect [:ACQuire]: ISOLation <1,2|2,1> SENSe: CORRection: COEFficient: SAVE

4.3. One Port Calibration

1-port calibration is performed to measure single terminal DUTs such as antennas, only the Short, Open, and Load standards are needed from the SOLT kit. Figure 41 shows the calibration measurement setup with the eVNA, SOLT standards and accessory cables. Including the cables and accessories in the calibration enables the reference plane to be set at the DUT connector.

To perform the 1-port calibration:

Caution:

1. Select a calibration kit

Response \rightarrow Cal \rightarrow Cal Kit \rightarrow ...

2. Specify the 1-port SOL calibration type and the port for the measurement: Response \rightarrow Cal \rightarrow Calibrate \rightarrow 1-port SOL \rightarrow Port 1 | Port 2

Port 1		×
Subclass 1 - SMA-M to SM	M-AN	
Port 1		
Open	Short	Load
Apply	Overwrite	Close

Figure 41: Measurement setup for 1-port calibration

Ensure the bias-tee outputs are disabled to prevent damage to calibration standards

eVNA-63+ USER GUIDE – D - CALIBRATE | 106

- 3. Connect the Open standard on the source port cable as shown in figure 41, using a torque wrench
- 4. Click the Open button in the calibration window to run the calibration sweep, a tick symbol will appear next to Open when complete

- 5. Repeat for the Short and Load standards
- 6. Click Apply and then Close to complete the process and apply the calibration coefficients to the measured data
- 7. Save the instrument and calibration state so it can be recalled later if needed (enter a filename and select the .cstate file type)

System \rightarrow Save / Recall \rightarrow Save

After the full calibration has been completed, it is possible to repeat the calibration measurement for an individual standard if needed. Follow the steps above but measure only the standard which needs to be updated, then click the Overwrite button to complete, instead of Apply.

SCPI

:SYSTem: BIAStee 0 SENSe: CORRection: COLLect: CKIT <number> SENSe: CORRection: COEFficient: METHod: SOLT 1 SENSe: CORRection: COEFficient: METHod: SOLT: NPORTS 1 SENSe: CORRection: COEFficient: METHod: SOLT: PORTS <1|2> SENSe: CORRection: COEFficient: METHod: SOLT1 <1,2> SENSe: CORRection: COLLect [:ACQuire]: OPEN <1|2> SENSe: CORRection: COLLect [:ACQuire]: SHORt <1|2> SENSe: CORRection: COLLect [:ACQuire]: LOAD <1|2> SENSe: CORRection: COEFficient: SAVE

4.4. Two Port Calibration

The full 2-port calibration is the recommended approach where best accuracy is required, although it is the most time consuming. It requires the full SOLT calibration kit and the user must select the proper accessories based on the connector types of the DUT, considering whether it is an insertable (with connectors of opposite genders) or non-insertable (with connectors of the same gender) device. An example of the measurement connections to perform a 2-port calibration is shown in figure 42 & 43.

Figure 42: Open, Short & Load must be connected in turn on ports 1 & 2

To perform the 2-port calibration:

Caution:

- Ensure the bias-tee outputs are disabled to prevent damage to calibration standards
- 1. Select a calibration kit

Response \rightarrow Cal \rightarrow Cal Kit \rightarrow ...

2. Specify the 2-port SOLT calibration type: Response \rightarrow Cal \rightarrow Calibrate \rightarrow 2-port SOLT

ente 2-port SOLT	×
Subclass 1 - Default	\checkmark
Port 1	Port 2
Open	Open X
Short ×	Short X
Load	Load
Thru	Isolation
Apply	Vverwrite Close

- 3. Connect the Open standard on the port 1 cable as shown in figure 42, using a torque wrench
- 4. Click the Port 1 Open button in the calibration window to run the calibration sweep, a tick symbol will appear next to Open when complete

Open

- 5. Repeat for the Short and Load standards on port 1
- 6. Repeat the process for all 3 standards (Open, Short and Load) on port 2
- 7. Connect the Thru standard between the cables on port 1 and 2 using a torque wrench, as shown in figure 43

- will appear next to Thru when complete
- figure 42
- symbol will appear next to Isolation when complete
- to the measured data
- 12. Save the instrument and calibration state so it can be recalled later if needed (enter a filename and select the .cstate file type) System \rightarrow Save / Recall \rightarrow Save

After the full calibration has been completed, it is possible to repeat the calibration measurement for an individual standard if needed. Follow the steps above but measure only the standard which needs to be updated, then click the Overwrite button to complete, instead of Apply.

SCPI

:SYSTem: BIAStee 0

SENSe: CORRection: COLLect:CKIT <number> SENSe: CORRection: COEFficient: METHod: SOLT 2 SENSe: CORRection: COEFficient: METHod: SOLT: NPORTS 2 SENSe: CORRection: COEFficient: METHod: SOLT: PORTS <1,2|2,1> SENSe: CORRection: COLLect [:ACQuire]: OPEN <1|2> SENSe: CORRection: COLLect [:ACQuire]: SHORt <1|2> SENSe: CORRection: COLLect [:ACQuire]: LOAD <1|2> SENSe: CORRection: COLLect [:ACQuire]: OPEN <2|1> SENSe: CORRection: COLLect [:ACQuire]: SHORt <2|1> SENSe: CORRection: COLLect [:ACQuire]:LOAD <2|1> SENSe: CORRection: COLLect [:ACQuire]: THRU <1,2|2,1> SENSe: CORRection: COLLect [:ACQuire]: ISOLation <1,2|2,1> SENSe: CORRection: COEFficient: SAVE

5.Optimizing Calibration Conditions

There are a number of simple settings which can be applied to improve the accuracy of calibration measurements, typically at the expense of measurement speed: Reduce the IF bandwidth:

Response \rightarrow Avg \rightarrow IF Bandwidth

8. Click the Thru button in the calibration window to run the calibration sweep, a tick symbol

9. Connect Loads on both the port 1 and port 2 cables using a torque wrench, as shown in

10. Click the Isolation button in the calibration window to run the calibration sweep, a tick

11. Click Apply and then Close to complete the process and apply the calibration coefficients

IF Bandwidth	10	kHz	\sim

Enable averaging during the calibration measurements to minimize random errors:

 Specify the number of sweeps over which measurements should be averaged: Response → Avg → Factor

Factor 16

4. Toggle averaging mode on:

Response \rightarrow Avg \rightarrow Averaging

Power Level -5 dBm V

6. Calibration Verification

6.1. Smith Chart Analysis

The Smith chart plot can be used to verify the quality of an Open / Short / Load calibration measurement. Before performing the calibration measurements, set the trace format to Smith chart and the measurement to S_{11} . The closer to the center of the Smith chart the frequency trace is, the closer matched to the 50 Ω characteristic impedance. Figures 44 shows the Smith chart plots for the Short, Open and Load standards. All standards should appear close to the x-axis with the Short on the left-hand edge at 0Ω , the Load on the center at 50 Ω and the Open on the right-hand edge at infinite impedance. Since the calibration standards are not ideal, a resistive arc will typically appear for the Short and a capacitive arc for the Open.

Figure 44: Smith chart representation of Short, Open & Load standards

6.2. Golden DUT

One method for verifying whether the last VNA calibration is valid is through the use of a golden DUT. The DUT can be any reliable 2 port device, such as a band pass filter. After a full calibration, the golden DUT can be characterized to obtain and save a reference set of measurement data. To re-confirm the accuracy of the VNA and calibration later, the golden DUT can be measured again and the data compared to the original saved data. Any differences in the data tend to indicate drift errors which have appeared over time since the last calibration, or deviations in the test setup.

7. Additional Calibration Options

7.1. Power Calibration

The eVNA supports power calibration of ports 1 and 2 independently with an external power meter. The settings can be found under: Response \rightarrow Cal \rightarrow More \rightarrow Power Calibration \rightarrow Port n \rightarrow ... 7.2. Receiver Calibration

A receiver calibration can be performed on ports 1 and 2 for measurements requiring an accurate output power level. The settings are under: Response \rightarrow Cal \rightarrow More \rightarrow Receiver Calibration \rightarrow ...

7.3. Cal Trig Source

External or software trigger synchronisation can be enabled for calibration measurements by setting the calibration trigger source to "System". In this mode the calibration measurements will respond to the trigger setting defined for measurements. In "Internal" trigger mode, calibration measurements do not wait for an external trigger input.

To toggle between "System" and "Internal" trigger calibration modes: Response \rightarrow Cal \rightarrow More \rightarrow Cal Trig Source

E - Measure

1. Measurement Process Flow

Figure 45 presents the measurement data process flow diagram for the eVNA. This summarizes the steps taken automatically by the eVNA from measurement to display and is a means to understanding where each level of data correction and manipulation is applied.

Figure 45: Data process flow diagram for eVNA measurements

2. Measurement Examples:

Several examples in this section will be used to present the procedure for typical active and passive device measurements. The Calibration section of this guide should be followed to calibrate for the test setups in advance of the measurements.

2.1. One Port Device Measurement (Antenna Example)

The measurement of a 2.4 GHz WiFi antenna will be used as an example of a passive 1-port device measurement.

Prepare

Define the measurement data required and familiarize yourself with the relevant eVNA settings. Based on the expected characteristics of the DUT, consider the required sweep frequency range, power level and number of measurement points required.

- 1. Return the eVNA-63+ to its default state:
- System \rightarrow Preset \rightarrow OK
- 2. Set the frequency sweep parameters as required: Stimulus \rightarrow Start \rightarrow 500 kHz Stimulus \rightarrow Stop \rightarrow 6000 MHz
- 3. Set the sweep power level:

Stimulus \rightarrow Sweep Setup \rightarrow Power Menu \rightarrow Power Level \rightarrow 0 dBm

- 4. Set the number of points to include in the frequency sweep: Stimulus \rightarrow Sweep Setup \rightarrow Points \rightarrow 401
- 5. Set the IF bandwidth:

Response \rightarrow Avg \rightarrow IF bandwidth \rightarrow 100 kHz

SCPI

SYSTem: PRESet: MODE USER SENSe: FREQuency: STARt 500000 SENSe: FREQuency: STOP 600000000 SOURce: POWer 0 SENSe: SWEep: POINts 401

Practice

Select the appropriate cables and adapter based on the gender of the antenna connector. Allow the eVNA-63+ sufficient time to warm up.

Calibrate

Carry out the calibration using the 1-port SOL method on port 1, with the correct calibration kit selected. Refer to section C-4.3 for details.

Measure

- 1. Connect the DUT to the open end of the cable from port 1
- 2. Set the trace to display S11 (return loss):

Response \rightarrow Measure \rightarrow S11

3. Add a marker to the trace:

Markers / Analysis \rightarrow Setup \rightarrow Marker 1

4. Use the mouse cursor to drag marker 1 on the trace display to the lowest point on the S11 plot. This is the point where the antenna returns the least amount of energy to the source and therefore where it transmits the most power (resonance).

- 5. Scale the display to present the graph as clearly as possible Response \rightarrow Scale \rightarrow Autoscale All
- 6. Save the data so that it can be recalled later

System \rightarrow Save / Recall \rightarrow Save

2.2. Pair of One Port Device Measurements (Dual Antenna Example)

The 1-port antenna measurement outlined above can be extended with a second 1-port antenna connected on port 2. S11 for both antennas can then be plotted simultaneously for comparison and analysis of any interaction between the 2 DUT. Prepare

Complete the steps for the 1-port antenna example above

Practice

Select the appropriate cables and adapter based on the gender of the antenna connector.

Calibrate

Repeat the calibration process for port 2, with a 1-port SOL calibration on port 2. Measure

- 1. With the first antenna already connected and displayed on port 1, connect the second antenna on port 2
- 2. Add an additional trace to the display Channel / Trace \rightarrow Trace \rightarrow Num Traces \rightarrow 2
- 3. Select trace 2 and display S22 (input return loss for the DUT on port 2) Response \rightarrow Measure \rightarrow S22
- 4. Scale the display

Response \rightarrow Scale \rightarrow Autoscale All

5. Both traces should now be visible on the same graph display

(trace 1 / S11 for the antenna on port 1 and trace 2 / S22 for the antenna on port 2)

2.3. Two Port Passive Device Measurement (Band Pass Filter Example)

The 1-port antenna measurement outlined above can be extended with a second 1-port antenna connected on port 2. S11 for both antennas can then be plotted simultaneously for comparison and analysis of any interaction between the 2 DUT.

Prepare

Define the measurement data required and familiarize yourself with the relevant eVNA settings. Based on the expected characteristics of the DUT, consider the required sweep frequency range, power level and number of measurement points required.

1. Return the eVNA-63+ to its default state:

System \rightarrow Preset \rightarrow OK

2. Set the frequency sweep parameters as required:

Stimulus \rightarrow Start \rightarrow 500 kHz

Stimulus \rightarrow Stop \rightarrow 6000 MHz

3. Set the sweep power level:

Stimulus \rightarrow Sweep Setup \rightarrow Power Menu \rightarrow Power Level \rightarrow 0 dBm

4. Set the number of points to include in the frequency sweep:

Stimulus \rightarrow Sweep Setup \rightarrow Points \rightarrow 201

5. Set the IF bandwidth:

Response \rightarrow Avg \rightarrow IF bandwidth \rightarrow 100 kHz

SCPI

SYSTem: PRESet: MODE USER SENSe: FREQuency: STARt 500000 SENSe:FREQuency: STOP 600000000 SOURce: POWer 0 SENSe: SWEep: POINts 201 [IF bandwidth can't be set with SCPI]

Practice

Select the appropriate set of cables and adapters based on the gender of the band pass filter connectors. Allow the eVNA-63+ sufficient time to warm up.

Calibrate

Carry out the calibration using the 2-port SOLT method, with the correct calibration kit selected. Refer to section C-4.4 for details.

Measure

- and adapters used for the calibration
- 2. Set 2 traces to display S11 and S21 on the same graph: Channel / Trace \rightarrow Trace \rightarrow Num Traces \rightarrow 2
- Response \rightarrow Measure \rightarrow S21
- 4. Add a marker to the trace: Markers / Analysis \rightarrow Setup \rightarrow Marker 1
- the peak search function:

Markers / Analysis \rightarrow Search \rightarrow Peak \rightarrow Search Peak

6. Display the filter bandwidth using the bandwidth search function: Markers / Analysis \rightarrow Search \rightarrow Bandwidth

The marker label will display the bandwidth, center frequency, lower and upper cut-off frequencies and the Q of the filter, as shown in Figure 46.

Figure 46: Measured band pass filter S21 response

1. Connect the DUT into the RF test path using the same configuration of accessory cables

3. Trace 1 will default to S11, click trace 2 to make it active and then set it to display S21:

5. Set the marker to the center of the pass band response by specifying the frequency or using

3. De-Embedding Measurement Data

De-embedding is the process of removing the contribution of a test fixture from the measured DUT results, the goal is to move the reference plane as close to the edge of the DUT as possible. This capability can be used to remove the phase length / loss of fixed coaxial cables, microstrip lines, or test fixtures from a DUT measurement. Figure 47 shows a possible application for this principle, where the calibration was performed with the configuration on the right but later in the setup an additional cable is required between the DUT and eVNA instrument.

Figure 47: Typical 2-port DUT measurement setup

The eVNA supports 3 possible methods of de-embedding, the details of which are covered in the respective sections of this guide.

- 1. Port extension
- 2. Time domain gating
- 3. Modify the calibration kit

3.1 Port Extension

Port extension allows the reference plane to be moved from the calibration plane to the DUT edges by adjusting for time delay and loss in the test fixturing.

Figure 48 presents a common application for port extension where characterization of a DUT mounted on a test fixture is required. After calibration, the reference plane for the eVNA is at the connector edges as shown in figure 49. The DUT is mounted on the test fixture after the SMA launch connector and a section of microstrip (middle of image). To measure S11 of the DUT itself, the input section of the fixture needs to be de-embedded by moving the reference plane from the test cable connector, to the DUT input lead. Using port extensions, it is not required to perform the difficult task of creating a separate test fixture without the DUT as a reference measurement. The electrical characteristics of the fixture can be de-embedded from the measurement mathematically.

1. Open the port extension settings window Response \rightarrow Cal \rightarrow Port Extension

Figure 48: Desired reference plane location at the DUT input, mounted on an evaluation board

Figure 49: Desired reference plane location at the output of the VNA cable

••• Port Extension						×
Port Extension Denable Port Exte Port 1 Port 2	nsion					
Delay						
Delay Length Delay Time	0	m ps	\sim			
Loss						
DC Loss	0	mdB	\sim			
Loss 1	0		requency requency	1	GHz GHz	
Velocity Factor	1					
Medium • Coaxial • Waveguide		Cutoff Freque	ncy 2.48	8	GHz 🗸	
	ок	Apply		Cancel		

- 2. Check the "Enable port extension" option
- 3. Specify the electrical delay time required. If delay length is known instead, enter this and the software will automatically calculate and suggest the equivalent delay time value. Delay time must be between -10 and +10 seconds.
- 4. Specify the loss for the test fixture / substrate at DC and 1 to 2 other frequencies if known. An equation is applied to extrapolate loss across the sweep range.
- 5. Adjust the velocity factor for the medium as required (table 10 summarizes some typical values)
- 6. The media type can also be set between coaxial and waveguide (the cut-off frequency must be specified for waveguide)
- 7. Repeat for port 2 if required
- 8. Click Apply and OK to update the measured data

Dielectric	Velocity Factor
Light in a vacuum	1.0
Air line	1.0
Polyethylene	0.66
Foamed polyethylene	0.82

Table 10: Typical dielectrics and their velocity factors

3.2. Time Domain Gating

Time domain gating is another feature of the eVNA which allows the user to de-embed test fixtures from the measured data. Data can be mathematically transformed into the time domain and a particular portion (based on the electrical length) "gated" from the data. On converting back to the frequency domain, the effect of the gated section is removed from the data. The gate type can be defined in terms of a notch or bandpass characteristic **3.3. Modify the Cal Kit**

The ability to modify calibration kit provides a simplistic method to remove the effect of the test set-up from DUT measurements. Calibration kits can be defined to include the effects of adapters, coaxial cables, connectors, and other components in the test path. Refer to section C-3.5 for details on how to modify the cal kit standards.

Note:

not included.

4.Optimizing Measurement Speed vs Measurement Performance

There are a number of VNA settings which can be altered to optimize the measurement, typically as a trade-off between measurement speed and measurement accuracy.

4.1. Number of Sweep Points

Reducing the number of points in the sweep will reduce the sweep time. If the typical characteristic of the DUT is known then it may be possible to optimize the number of points by using a segmented sweep. The sweep for a band pass filter measurement for example, could be configured to have more points in the transition regions where a large variation in data is expected, with fewer points in the pass band and far into the stop band.

4.2. Turn off Display Update

Where fastest speed is critical and the measurement does not need to be viewed live, the display update can be turned off and the trace will pause at its last value. Measurement operations continue in the background and the display update can be re-enabled again

 It is recommended to clearly label cal kits which have been modified in this way, to avoid inadvertent use in other measurements where the "de-embedded" items are when needed. This feature is particularly applicable where the measurement is automated via the eVNA API.

4.3. Use a Single Source

Using both sources for eVNA measurements will double the sweep time due to internal source switching. Limiting the measurements to those from a single source (for example S11 and S21 only) therefore allows a faster sweep time.

4.4. IF Bandwidth

IF bandwidth can be adjusted to suit the highest measurement priority. Narrower bandwidths reduce the effect of random noise on the measurement, improving measurement accuracy. Wider bandwidths allow a faster measurement speed but at the expense of measurement accuracy.

4.5. Data Averaging

Data averaging can be enabled to improve measurement accuracy. Each data point is calculated as an average across a set number of sweeps, therefore minimizing the effect of any random noise fluctuations on the data. The trade-off is against measurement speed as multiple sweeps need to be performed for each measurement.

4.6. Sweep Power Level

Increasing the power level of the sweep has the effect of increasing the signal to noise ratio (SNR) of the sweep, improving overall measurement accuracy.

Caution:

• Review the power ratings of all devices connected in the test path before selecting an output power level

eVNA-63+ USER GUIDE – E - MEASURE | 124